初中数学1.2 全等三角形精品课时练习
展开专题1.2�全等三角形相关辅助线五种方法
学校:___________姓名:___________班级:___________考号:___________
评卷人
得分
一、单选题
1.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有( )
A.①②③④ B.②③ C.②③④ D.③④
2.如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是( )
A.1<AD<6 B.1<AD<4 C.2<AD<8 D.2<AD<4
评卷人
得分
二、解答题
3.在中,,点D、E分别在、上,连接、和;并且有,.
(1)求的度数;
(2)求证:.
4.(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
方法1:在上截取,连接,得到全等三角形,进而解决问题;
方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
5.【探索发现】如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将绕点A顺时针旋转,点D与点B重合,得到,连接AM、AN、MN.
(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.
(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,,连接MN,请写出MN、DM、BN之间的数量关系,并写出证明过程.
(3)如图③,在四边形ABCD中,AB=AD,,,点N,M分别在边BC,CD上,,请直接写出线段BN,DM,MN之间的数量关系.
6.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.
(1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是 ;
(2)如图2,是的中线,点在边上,交于点且,求证:;
(3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.
7.如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.
求让:
8. P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
9.如图,△ABC中,D为BC的中点,
(1)在图中作出CM⊥AD,BN⊥AD,垂足分别为M、N;
(2)求证:DM=DN;
(3)求AD=3,求AM+AN的值.
10.如图.∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC,CB的延长线交DE于F.
(1)求证:点F是ED的中点;
(2)求证:S△ABC=2S△BEF.
11.如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.
(1)求∠ADB的度数;
(2)线段DE,AD,DC之间有什么数量关系?请说明理由.
12.如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°
(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;
(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;
(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为 .
13.已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.
14.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;
(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.
15.如图1,在等边三角形中,于于与相交于点O.
(1)求证:;
(2)如图2,若点G是线段上一点,平分,,交所在直线于点F.求证:.
(3)如图3,若点G是线段上一点(不与点O重合),连接,在下方作,边交所在直线于点F.猜想:三条线段之间的数量关系,并证明.
16.(1)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明 ABE≌ADG,再证明AEF≌AGF,可得出结论,他的结论应是______________;
(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF∠BAD,上述结论是否仍然成立,并说明理由;
(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
17.已知中,分别平分和,交于点O.
(1)直接写出与的数量关系;
(2)若,利用(1)的关系,求出的度数;
(3)利用(2)的结果,试判断的数量关系,并证明.
18.已知,在中,,点为边的中点,分别交,于点,.
(1)如图1,①若,请直接写出______;
②连接,若,求证:;
(2)如图2,连接,若,试探究线段和之间的数量关系,并说明理由.
19.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.
(1)求四边形AEDF的周长;
(2)若∠BAC=90°,求四边形AEDF的面积.
20.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.
【探究与发现】
如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.
【理解与应用】
如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.
(1)求证:AC=BD;
(2)若BD=3,AD=5,AE=x,求x的取值范围.
21.如图1,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC于点F.
(1)求证:EF=DF;
(2)如图2,过点D作DG⊥BC,垂足为G,求证:BC=2FG.
22.如图,已知AD为△ABC的中线,点E为AC上一点,连接BE交AD于点F,且AE=FE.
求证:BF=AC.
23.(1)如图1,已知中,AD是中线,求证:;
(2)如图2,在中,D,E是BC的三等分点,求证:;
(3)如图3,在中,D,E在边BC上,且.求证:.
24.已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC
(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度.
(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC
(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.
25.(1)方法呈现:
如图①:在中,若,,点D为BC边的中点,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使,再连接BE,可证,从而把AB、AC,集中在中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;
(2)探究应用:
如图②,在中,点D是BC的中点,于点D,DE交AB于点E,DF交AC于点F,连接EF,判断与EF的大小关系并证明;
(3)问题拓展:
如图③,在四边形ABCD中,,AF与DC的延长线交于点F、点E是BC的中点,若AE是的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.
26.如图,以△ABC的两边AB和AC为腰在△ABC外部作等腰Rt△ABD和等腰Rt△ACE,AB=AD,AC=AE,∠BAD=∠CAE=90°.
(1)连接BE、CD交于点F,如图①,求证:BE=CD,BE⊥CD;
(2)连接DE,AM⊥BC于点M,直线AM交DE于点N,如图②,求证:DN=EN.
参考答案:
1.C
【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.
【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,
∴△ABF≌△ACD,
∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,
∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确
无法判断BE=CD,故①错误,
故选:C.
【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.B
【分析】先延长到,且,并连接,由于,,利用易证,从而可得,在中,再利用三角形三边的关系,可得,从而易求.
【详解】解:延长到,使,连接,则AE=2AD,
∵,,,
∴,
,
在中,,
即,
∴.
故选:.
【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.
3.(1);(2)见解析
【分析】(1)由,,可得为等边三角形,由,,,可证
(2)延长至F,使,连接, 由,,且,可证 由,可证为等边三角形,可得, 可推出结论,
【详解】解:(1)∵,,
∴为等边三角形,
∴,
∵,,
∵,
∴
(2)如图,延长至F,使,连接,
由(1)得为等边三角形,
∴,
∵,
又∵,且,
∴,
在与中,
∴
∴,
∴,
∴
又∵,
∴为等边三角形
∴,
又∵,且,
∴,
【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.
4.(1)证明见解析;(2);理由见解析
【分析】(1)根据题意,采用截取等长的方法,在上截,构造,再利用等腰三角形的性质求解;
(2)巧妙利用(1)的结论和方法进行延伸,延长,结合等边三角形的性质,同时构造两个全等三角形,进而找到边长关系.
【详解】
解:(1)方法1:在上截,连接,如图,
∵平分,
∴,
在和中,,
∴,,,
∵,,
∴,,
∴.
方法2:延长到点,使得,连接,如图,
∵平分,
∴.
在和中,,
∴,,,
∵,,
∴,
∴,
∴.
(2)、、之间的数量关系为:,
如图2所示,延长到点,使,连接,
由(1)可知,
∵,
∴为等边三角形.,,
∵,
∴,,
∵,
∴为等边三角形,
∴,,
∵,
∴,即,
在和中,,
∴,,
∵,
∴.
【点睛】本题考查了全等三角形的判断与性质,等腰三角形、等边三角形关系与性质,关键是要采用截长补短的方法,添加适当的辅助线构造出全等三角形.
5.(1),证明见解析;(2),证明见解析;(3).
【分析】(1)根据正方形的性质和旋转的性质可证≌,利用SAS可证,则可得:;
(2)根据正方形的性质和旋转的性质可证≌,利用SAS可证,则可得:;
(3)根据正方形的性质和旋转的性质可证≌,利用SAS可证,则可得:;
【详解】证明:(1)如图①,∵四边形ABCD是正方形
∴AB=AD,=
将绕点A顺时针旋转,得到
∴≌
∴
∵
在和中
∵,
∴
(2)如图②,将绕点A顺时针旋转,得到
∵四边形ABCD是正方形
∴AB=AD,=
∵绕点A顺时针旋转,得到
∴≌
∴
,
∵
在和中
∵,
即:;
(3)如图,
∵,,,
将绕点A顺时针旋转,得到
∴≌
∴
在和中
;
【点睛】本题主要考查正方形的性质及全等三角形的判定和性质等知识,利用旋转法构造全等三角形是解题的关键是学会.
6.(1);(2)见解析;(3),证明见解析
【分析】(1)延长到点,使,连接,即可证明,则可得,在中,根据三角形三边关系即可得到的取值范围,进而得到中线的取值范围;
(2)延长到点使,连接,由(1)知,则可得,由可知,,由角度关系即可推出,故,即可得到;
(3)延长到,使,连接,即可证明,则可得由,以及角度关系即可证明点在一条直线上,通过证明≌,即可得到,进而通过线段的和差关系得到.
【详解】(1)延长到点,使,连接,
∵是的中线,
∴,
在和中,
,,,
∴,
∴,
在中,
,
∴,即,
∴;
(2)证明:延长到点使,连接,
由(1)知,
∴,
,
,
,
,
,
,
,
(3),
延长到,使,连接,
,
,
,
,
,
点在一条直线上,
,
∴,
∴在和中,
,,,
∴≌,
,
∵,
.
【点睛】本题考查了三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.
7.见详解
【分析】过点D作DE∥AC,交BC于点E,根据等边三角形和平行线的性质得∠MDE=∠MEC,DE=CE,从而证明∆EMD≅∆CME,进而即可得到结论.
【详解】过点D作DE∥AC,交BC于点E,
∵是等边三角形,
∴∠B=∠ACB=60°,
∵DE∥AC,
∴∠DEB=∠ACB=60°,∠MDE=∠MEC,
∴是等边三角形,
∴BD=DE,
∵,
∴DE=CE,
又∵∠EMD=∠CME,
∴∆EMD≅∆CME,
∴.
【点睛】本题主要考查等边三角形的性质和判定定理以及全等三角形的判定和性质定理,添加辅助线,构造等边三角形和全等三角形,是解题的关键.
8.(1)证明见解析;(2)DE=3.
【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;
(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DEAC,即可得出结果.
【详解】(1)如图1所示,点P作PF∥BC交AC于点F.
∵△ABC是等边三角形,
∴△APF也是等边三角形,AP=PF=AF=CQ.
∵PF∥BC,∴∠PFD=∠DCQ.
在△PDF和△QDC中,,
∴△PDF≌△QDC(AAS),
∴PD=DQ;
(2)如图2所示,过P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,△APF是等边三角形,
∴AP=PF=AF.
∵PE⊥AC,∴AE=EF.
∵AP=PF,AP=CQ,∴PF=CQ.
在△PFD和△QCD中,,
∴△PFD≌△QCD(AAS),
∴FD=CD.
∵AE=EF,∴EF+FD=AE+CD,
∴AE+CD=DEAC.
∵AC=6,∴DE=3.
【点睛】本题考查等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质,解题的关键是掌握等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质.
9.(1)见解析
(2)见解析
(3)6
【分析】(1)根据条件结合作垂线的方法作出图形,即可得;
(2)由题意得BD=CD,根据CM⊥AD,BN⊥AD得∠BND=∠CMD=90°,用AAS证明△BND≌△CMD即可得;
(3)根据全等三角形的性质得DM=DN,利用线段的和与差得AM+AN=AD+DM+AD﹣ND和DM=DN,即可得.
【详解】(1)解:如图所示,
(2)解:∵D为BC的中点,
∴BD=CD,
∵CM⊥AD,BN⊥AD,
∴∠BND=∠CMD=90°,
在△BND和△CMD中,
∴△BND≌△CMD(AAS),
∴DN=DM.
(3)解:∵△BND≌△CMD,
∴DM=DN,
∵AM=AD+DM,AN=AD﹣ND,
∴AM+AN=AD+DM+AD﹣ND,
∵DM=DN,
∴AM+AN=2AD=6.
【点睛】本题考查了全等三角形的判定与性质,解题的关键是掌握全等三角形判定与性质.
10.(1)见解析
(2)见解析
【分析】(1)如图,过点E作EM⊥CF交CF的延长线于M,证明 再证明△ABC≌△BEM(AAS),可得BD=EM,再证明△EMF≌△DBF(AAS),从而可得结论;
(2)由△ABC≌△BEM,△EMF≌△DBF,可得S△ABC=S△BEM,S△EMF=S△DBF,再利用三角形中线的性质可证结论.
【详解】(1)证明:如图,过点E作EM⊥CF交CF的延长线于M,
∵BE⊥AB,
∴∠EBM+∠ABC=180°﹣90°=90°,
∵∠C=90°,
∴∠A+∠ABC=180°﹣90°=90°,
在△ABC和△BEM中,
∵,
∴△ABC≌△BEM(AAS),
∴BC=EM,
∵BD=BC,
∴BD=EM,
在△EMF和△DBF中,
∵,
∴△EMF≌△DBF(AAS),
∴EF=DF,
∴点F是ED的中点;
(2)证明:∵△ABC≌△BEM,△EMF≌△DBF,
∴S△ABC=S△BEM,S△EMF=S△DBF,
∵点F是ED的中点,
∴S△BEF=S△DBFS△BEMS△ABC,
∴S△ABC=2S△BEF.
【点睛】本题考查的是全等三角形的判定与性质,三角形的中线的性质,掌握“利用AAS证明三角形全等”是解本题的关键.
11.(1)120°;(2)DE=AD+CD,理由见解析
【分析】(1)根据三角形内角和定理得到∠ABC=∠ACB=75°,根据全等三角形的性质得到∠BAD=∠CAD=15°,根据三角形的外角性质计算,得到答案;
(2)在线段DE上截取DM=AD,连接AM,得到△ADM是等边三角形,根据△ABD≌△AEM,得到BD=ME,结合图形证明结论
【详解】解:(1)∵AB=AC,∠BAC=30°,
∴∠ABC=∠ACB=(180°﹣30°)=75°,
∵DB=DC,∠DCB=30°,
∴∠DBC=∠DCB=30°,
∴∠ABD=∠ABC﹣∠DBC=45°,
在△ABD和△ACD中,,
∴△ABD≌△ACD (SSS),
∴∠BAD=∠CAD=∠BAC=15°,
∴∠ADE=∠ABD+∠BAD=60°,
∴∠ADB=180°﹣∠ADE=180°﹣60°=120°;
(2)DE=AD+CD,
理由如下:在线段DE上截取DM=AD,连接AM,
∵∠ADE=60°,DM=AD,
∴△ADM是等边三角形,
∴∠ADB=∠AME=120°.
∵AE=AB,
∴∠ABD=∠E,
在△ABD和△AEM中,,
∴△ABD≌△AEM(AAS),
∴BD=ME,
∵BD=CD,
∴CD=ME.
∵DE=DM+ME,
∴DE=AD+CD.
【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
12.(1)见解析;(2)见解析;(3)CF=EF-BD.
【分析】(1)先证明∠ACE=∠CBD,即可利用AAS证明△AEC≌△CDB;
(2)在直线l上位于C点左侧取一点E,使得∠AEC=60°,连接AE,由(1)可知△AEC≌△CDB,CE=BD,然后证明△FAE≌△HFG得到GH=EF,则CF=EF+CE=GH+BD即HG+BD=CF;
(3)在直线l上位于C点右侧取一点E使得∠AED=60°,连接AE,在直线l上位于D点左侧取一点M使得BM=BD,设AB与直线l交于N,先证明△BDM是等边三角形,得到∠DBM=∠DMB=60°,然后证明∠ACE=∠ABD=∠CBM,即可利用AAS证明△AEC≌△CMB得到CE=BM=BD;最后证明△AEF≌△FGH得到HG=EF,则EF=CE+CF=CF+BD即CF=EF-BD.
【详解】解:(1)∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
∴∠ACE+∠BCD=180°-∠ACB=120°,
∵∠BDC=60°,
∴∠BCD+∠CBD=180°-∠BDC=120°,
∴∠ACE=∠CBD,
在△AEC和△CDB中,
,
∴△AEC≌△CDB(AAS)
(2)如图所示,在直线l上位于C点左侧取一点E,使得∠AEC=60°,连接AE,
由(1)可知△AEC≌△CDB,
∴CE=BD,
∵∠ACE=60°,
∴∠AEF=120°,
∴∠AEF=∠AFH=120°,
∴∠AFE+∠FAE=180°-∠AEF=60°,∠AFE+∠HFG=180°-∠AFH=60°,
∴∠FAE=∠HFG,
在△FAE和△HFG中,
,
∴△FAE≌△HFG(AAS),
∴GH=EF,
∴CF=EF+CE=GH+BD即HG+BD=CF;
(3)如图所示,在直线l上位于C点右侧取一点E使得∠AED=60°,连接AE,在直线l上位于D点左侧取一点M使得BM=BD,设AB与直线l交于N
∵∠BDC=60°,BM=BD,
∴△BDM是等边三角形,
∴∠DBM=∠DMB=60°,
∵三角形ABC是等边三角形,
∴∠ABC=∠BAC=60°,AC=BC
∴∠ABM+∠CBM=∠ABM+∠ABD,
∴∠ABD=∠CBM,
∵∠BAC=∠BDC=60°,∠ANE=∠DNB,
∴∠ACE=∠ABD=∠CBM,
∵∠CMB=180°-∠DMB=120°,∠AEC=180°-∠AED=120°,
∴∠CMB=∠AEC,
在△AEC和△CMB中,
,
∴△AEC≌△CMB(AAS),
∴CE=BM=BD;
∵∠AFH=120°,
∴∠AFC+∠GFH=60°,
∵∠GFH+∠FHG=180°-∠HGF=60°,
∴∠AFC=∠FHG,
在△AEF和△FGH中,
,
∴△AEF≌△FGH(AAS),
∴HG=EF,
∴EF=CE+CF=CF+BD即CF=EF-BD.
故答案为:CF=EF-BD.
【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
13.(1)DM=EM.理由见详解;
(2)成立,理由见详解;
(3)MD=ME.
【分析】(1)DM=EM;过点E作EF//AB交BC于点F,然后利用平行线的性质和已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(2)成立;过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质与已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(3)MD=ME.过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质和已知条件得到△DBM∽△EFM,接着利用相似三角形的性质即可得到结论;
【详解】(1)解:DM=EM;
证明:过点E作EF//AB交BC于点F,
∵AB=AC,
∴∠ABC=∠C;
又∵EF//AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF//AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中
,
∴△DBM≌△EFM,
∴DM=EM.
(2)解:成立;
证明:过点E作EF//AB交CB的延长线于点F,
∵AB=AC,
∴∠ABC=∠C;
又∵EF//AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF//AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中
∴△DBM≌△EFM;
∴DM=EM;
(3)解:过点E作EF//AB交CB的延长线于点F,
∵∠DBM=∠EFM,∠DMB=∠EMF
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:2,
∴MD=ME.
【点睛】本题主要考查了三角形综合,涉及了等腰三角形性质和判定、全等三角形的判定与性质、相似三角形的判定和性质,利用平行构造全等三角形是解题关键.
14.(1)EF=BE+DF;(2)成立,理由详见解析;(3)14.
【分析】(1)延长FD到点G.使DG=BE.连结AG,由“SAS”可证△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可证△AEF≌△AGF,可得EF=FG,即可解题;
(2)延长EB到G,使BG=DF,连接AG,即可证明△ABG≌△ADF,可得AF=AG,再证明△AEF≌△AEG,可得EF=EG,即可解题;
(3)延长EA到H,使AH=CF,连接BH,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可证△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.
【详解】证明:(1)延长FD到点G.使DG=BE.连结AG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠BAD=100°,∠EAF=50°,
∴∠BAE+∠FAD=∠DAG+∠FAD=50°,
∴∠EAF=∠FAG=50°,
在△EAF和△GAF中,
∵,
∴△EAF≌△GAF(SAS),
∴EF=FG=DF+DG,
∴EF=BE+DF,
故答案为:EF=BE+DF;
(2)结论仍然成立,
理由如下:如图2,延长EB到G,使BG=DF,连接AG,
∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,
∴∠ABG=∠D,
∵在△ABG与△ADF中,
,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠BAG=∠DAF,
∵2∠EAF=∠BAD,
∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,
∴∠GAE=∠EAF,
又AE=AE,
∴△AEG≌△AEF(SAS),
∴EG=EF.
∵EG=BE+BG.
∴EF=BE+FD;
(3)如图,延长EA到H,使AH=CF,连接BH,
∵四边形ABCD是正方形,
∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,
∴∠BAH=∠BCF=90°,
又∵AH=CF,AB=BC,
∴△ABH≌△CBF(SAS),
∴BH=BF,∠ABH=∠CBF,
∵∠EBF=45°,
∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,
∴∠EBH=∠EBF,
又∵BH=BF,BE=BE,
∴△EBH≌△EBF(SAS),
∴EF=EH,
∴EF=EH=AE+CF,
∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.
【点睛】本题是四边形的综合题,考查了全等三角形的判定和性质,正方形的性质,添加恰当辅助线构造全等三角形是本题的关键.
15.(1)见解析
(2)见解析
(3),理由见解析
【分析】(1)由等边三角形的可求得,理由含角的直角三角形的性质可得,进而可证明结论;
(2)利用证明即可证明结论;
(3)连接,在上截取,连接,可证得是等边三角形,进而可利用证明,得到,由可说明猜想的正确性.
【详解】(1)证明:∵为等边三角形,
∴,,
∵,,
∴平分,平分,
∴,
∴,
在中,,,
∴,
∴;
(2)证明:∵,,
∴,
∴,
∴,
∵平分,
∴,
∴,
∵,
∴,
∴,
在和中,,
∴,
∴;
(3)解:.理由如下:连接,在上截取,连接,
∵,,
∴,
∴,
∴,
∴,,
∵,
∴是等边三角形,
∴,,
∴,,
∵,
∴,
∴,
在和中,,
∴,
∴,
∴,
∵,
∴.
【点睛】本题主要考查全等三角形的判定与性质,等边三角形的判定的与性质,含 角的直角三角形,角平分线的定义等知识的综合运用,属于三角形的综合题,证明相关三角形全等是解题的关键.
16.(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;(3)此时两舰艇之间的距离是210海里
【分析】(1)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;
(2)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;
(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.
【详解】解:(1)EF=BE+DF,证明如下:
在ABE和ADG中,
,
∴ABE≌ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在AEF和GAF中,
,
∴AEF≌AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为 EF=BE+DF.
(2)结论EF=BE+DF仍然成立;
理由:延长FD到点G.使DG=BE.连结AG,如图2,
在ABE和ADG中,
,
∴ABE≌ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在AEF和GAF中,
,
∴AEF≌AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如图3,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,
∴∠EOF∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(45+60)=210(海里).
答:此时两舰艇之间的距离是210海里.
【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.
17.(1)
(2)
(3),见解析
【分析】(1)根据三角形内角和定理得到,根据角平分线的定义、三角形内角和定理计算,得到答案;
(2)把代入计算即可;
(3)在上取点G,使得,连接,证明,根据全等三角形的性质得到,再证明,得到,结合图形证明结论.
【详解】(1)解:,
理由如下:,
∵分别平分和,
∴,
∴
;
(2)解:当时,;
(3)解:,
证明:在上取点G,使得,连接,
由(2)知:,
∴,
∵平分,
∴,
在和中,
,
∴,
∴,
∴,
∵平分,
∴,
∴在和中,
,
∴,
∴,
∵,
∴.
【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理、角平分线的定义,掌握全等三角形的判定定理和性质定理是解题的关键.
18.(1)①45°;②见解析;(2),理由见解析
【分析】(1)①利用直角三角形两个锐角相加得和三角形的外角等于不相邻的两个内角和的性质结合题干已知即可解题.
②延长至点,使得,连接,从而可证明≌(SAS),再利用全等的性质,可知,即可知道,所以,根据题干又可得到,所以,从而得出结论.
(2)延长至点,使得,连接,从而可证明≌(SAS),再利用全等的性质,可知,,根据题干即可证明≌(HL),即得出结论.
【详解】(1)①∵,
∴
∵
∴
又∵
∴
∴
故答案为.
②如图,延长至点,使得,连接,
∵点为的中点,
∴,
又∵,
∴≌,
∴,
∴,
∴,
又∵,
∴,
∴,
∴.
(2).
如图,延长至点,使得,连接,
∵,,
∴≌,
∴,,
∵.
∴≌,
∴.
【点睛】本题主要考查直角三角形的角的性质,三角形外角的性质,全等三角形的判定和性质以及平行线的性质.综合性较强,作出辅助线是解答本题的关键.
19.(1)14;(2)12.
【分析】(1)延长DE到G,使GE=DE,连接BG,根据线段中点的定义求出AE=4,AF=3,并利用SAS证明△AED≌△BEG,由全等三角形的性质并再次利用全等三角形的判定得出△GBD≌△ABD,可证得DE=AB=4,同理DF=AC=3,即可计算出四边形的周长;
(2)利用SSS可证△AEF≌△DEF,根据直角三角形的面积计算方法求出△AEF的面积,则四边形的面积即可求解.
【详解】解:(1)延长DE到G,使GE=DE,连接BG,
∵E、F分别是AB、AC的中点,AB=8,AC=6,
∴AE=BE=AB=4,AF=CF=AC=3.
在△AED和△BEG中,
,
∴△AED≌△BEG(SAS).
∴AD=BG,∠DAE=∠GBE.
∵AD⊥BC,
∴∠DAE+∠ABD=90°.
∴∠GBE+∠ABD=90°.
即∠GBD=∠ADB=90°.
在△GBD和△ABD中,
,
∴△GBD≌△ABD(SAS).
∴GD=AB.
∵DE=GD,
∴DE=AB=4.
同理可证:DF=AC=3.
∴四边形AEDF的周长=AE+ED+DF+FA=14.
(2)由(1)得AE=DE=AB=4,AF=DF=AC=3,
在△AEF和△DEF中,
,
∴△AEF≌△DEF(SSS).
∵∠BAC=90°,
∴S△AEF=AE•AF=×4×3=6.
∴S四边形AEDF=2S△AEF=12.
【点睛】本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质并能利用倍长中线法构造全等三角形是解题的关键.
20.[探究与发现]见解析;[理解与应用](1)见解析;(2)1<x<4
【分析】[探究与发现]由ASA证明△ABC≌△EDC即可;
[理解与应用](1)延长AE到F,使EF=EA,连接DF,证△DEF≌△CEA(SAS),得AC=FD,再证△ABD≌△AFD(AAS),得BD=FD,即可得出结论;
(2)由全等三角形的性质得AB=AF=2x,再由三角形的三边关系得AD-BD<AB<AD+BD,即5-3<2x<5+3,即可求解.
【详解】解:[探究与发现]
证明:∵DE∥AB,
∴∠B=∠D,
又∵BC=DC,∠ACB=∠ECD,
∴△ABC≌△EDC(ASA);
[理解与应用]
(1)证明:如图2中,延长AE到F,使EF=EA,连接DF,
∵点E是CD的中点,
∴ED=EC,
在△DEF与△CEA中,
,
∴△DEF≌△CEA(SAS),
∴AC=FD,
∴∠AFD=∠CAE,
∵∠CAE=∠B,
∴∠AFD=∠B,
∵AD平分∠BAE,
∴∠BAD=∠FAD,
在△ABD与△AFD中,
,
∴△ABD≌△AFD(AAS),
∴BD=FD,
∴AC=BD;
(2)解:由(1)得:AF=2AE=2x,△ABD≌△AFD,
∴AB=AF=2x,
∵BD=3,AD=5,
在△ABD中,由三角形的三边关系得:AD-BD<AB<AD+BD,
即5-3<2x<5+3,
解得:1<x<4,
即x的取值范围是1<x<4.
【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、平行线的性质、角平分线定义以及三角形的三边关系等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.
21.(1)答案见详解
(2)答案见详解
【分析】(1)过点D作DM∥AC,则∠ACB=∠DMB,∠DMF=∠ECF,进而可得:CE=MD,可证得∆DMF≅ ∆ECF,即可得到结论;
(2)过点D作DM∥AC,由(1)得∆DMF≅ ∆ECF,可得到MF=CF,根据等腰三角形三线合一,可得:BG=MG,进而可得到结论.
【详解】(1)证明:过点D作DM∥AC,如图,
∴∠ACB=∠DMB,∠DMF=∠ECF,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DMB,
∴BD=MD,
∵CE=BD,
∴CE=MD,
在∆DMF和∆ECF中,
∵,
∴∆DMF≅ ∆ECF(AAS),
∴EF=DF;
(2)证明:过点D作DM∥AC,如图,
由第(1)题得:BD=MD,∆DMF≅ ∆ECF,
∴MF=CF,
∵DG⊥BC,
∴BG=MG(等腰三角形三线合一),
∴BC=BM+CM=2(GM+FM)=2FG,
【点睛】本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,添加合适的辅助线,构造等腰三角形是解题的关键.
22.证明见解析
【分析】方法一:当题中有三角形中线时,常加倍中线构造平行四边形,利用平行四边形和等腰三角形的性质证得结论.
方法二:向中线作垂线,证明,得到,再根据AE=FE,得到角的关系,从而证明,最终得到结论.
【详解】方法一:延长AD到G,使DG=AD,连接BG,CG,∵DG=AD,BD=DC,∴四边形ABGC是平行四边形,∴AC//BG,∠CAD=∠BGD,又∵AE=FE,∴∠CAD=∠AFE,∴∠BGD=∠AFE=∠BFG,∴BG=BF,∵BG=AC,∴BF=AC
方法二:如图,分别过点、作,,垂足为、,
则.
,,
,
.
,,
,,
又,
,
.
【点睛】本题是较为典型的题型,至少可以用到两种方法来解题,此题的特点就是必须有中线这个条件才能构造平行四边形或双垂线.
23.(1)见解析;(2)见解析;(3)见解析
【分析】(1)利用“倍长中线”法,延长AD,然后通过全等以及三角形的三边关系证明即可;
(2)取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,通过“倍长中线”思想全等证明,进而得到AB=CQ,AD=EQ,然后结合三角形的三边关系建立不等式证明即可得出结论;
(3)同(2)处理方式一样,取DE中点M,连接AM并延长至N点,使得AM=NM,连接NE,CE,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.
【详解】证:(1)如图所示,延长AD至P点,使得AD=PD,连接CP,
∵AD是△ABC的中线,
∴D为BC的中点,BD=CD,
在△ABD与△PCD中,
∴△ABD≌△PCD(SAS),
∴AB=CP,
在△APC中,由三边关系可得AC+PC>AP,
∴;
(2)如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,
∵H为DE中点,D、E为BC三等分点,
∴DH=EH,BD=DE=CE,
∴DH=CH,
在△ABH和△QCH中,
∴△ABH≌△QCH(SAS),
同理可得:△ADH≌△QEH,
∴AB=CQ,AD=EQ,
此时,延长AE,交CQ于K点,
∵AC+CQ=AC+CK+QK,AC+CK>AK,
∴AC+CQ>AK+QK,
又∵AK+QK=AE+EK+QK,EK+QK>QE,
∴AK+QK>AE+QE,
∴AC+CQ>AK+QK>AE+QE,
∵AB=CQ,AD=EQ,
∴;
(3)如图所示,取DE中点M,连接AM并延长至N点,使得AM=NM,连接NE,CE,
∵M为DE中点,
∴DM=EM,
∵BD=CE,
∴BM=CM,
在△ABM和△NCM中,
∴△ABM≌△NCM(SAS),
同理可证△ADM≌△NEM,
∴AB=NC,AD=NE,
此时,延长AE,交CN于T点,
∵AC+CN=AC+CT+NT,AC+CT>AT,
∴AC+CN>AT+NT,
又∵AT+NT=AE+ET+NT,ET+NT>NE,
∴AT+NT>AE+NE,
∴AC+CN>AT+NT>AE+NE,
∵AB=NC,AD=NE,
∴.
【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.
24.(1);(2)见解析;(3),证明见解析
【分析】(1)根据已知条件得出为直角三角形,再根据证出,从而证出即可得出结论;
(2)如图2,延长DC到 K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后根据证明得,从而得出,然后得出结论;
(3)如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360°可以推得:∠PBQ=90°+∠ADC.
【详解】(1)证明:如图1,
∵,,
∴,
在和中,
∴,
∴,
∴;
(2)如图2,
延长至点,使得,连接
∵,
∴,
∵,
∴,
∵,,
∴,
∴,,
∵,,
∴,
∵,,
∴,
∴,
∴;
(3);
如图3,在延长线上找一点,使得,连接,
∵,
∴,
∵,
∴,
在和中,
∴,
∴,,
∴,
∵,
∴,
在和中,
∴,
∴,
∴,
∴,
∴.
【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
25.(1)1<AD<5,(2)BE+CF>EF,证明见解析;(3)AF+CF=AB,证明见解析.
【分析】(1)由已知得出AC﹣CE<AE<AC+CE,即5﹣4<AE<5+3,据此可得答案;
(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;
(3)如图③,延长AE,DF交于点G,根据平行和角平分线可证AF=FG,易证△ABE≌△GEC,据此知AB=CG,继而得出答案.
【详解】解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,
∵AD是BC边上的中线,
∴BD=CD,
在△BDE和△CDA中,
∵,
∴△BDE≌△CDA(SAS),
∴BE=AC=4,
在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
∴6﹣4<AE<6+4,即2<AE<10,
∴1<AD<5;
故答案为:1<AD<5,
(2)BE+CF>EF;
证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.
同(1)得:△BMD≌△CFD(SAS),
∴BM=CF,
∵DE⊥DF,DM=DF,
∴EM=EF,
在△BME中,由三角形的三边关系得:BE+BM>EM,
∴BE+CF>EF;
(3)AF+CF=AB.
如图③,延长AE,DF交于点G,
∵AB∥CD,
∴∠BAG=∠G,
在△ABE和△GCE中
CE=BE,∠BAG=∠G,∠AEB=∠GEC,
∴△ABE≌△GEC(AAS),
∴CG=AB,
∵AE是∠BAF的平分线,
∴∠BAG=∠GAF,
∴∠FAG=∠G,
∴AF=GF,
∵FG+CF=CG,
∴AF+CF=AB.
【点睛】此题是三角形综合题,主要考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.
26.(1)见详解;(2)见详解.
【分析】(1)只要证明△ABE≌△ADC即可解决问题;
(2)延长AN到G,使AG=BC,连接GE,先证,再证即可解决问题.
【详解】(1)证明:∵△ABD和△ACE都是等腰直角三角形,
∴AB=AD,AE=AC,
又∵∠BAD=∠CAE=90°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC,
∴△ABE≌△ADC,
∴BE=DC,∠ABE=∠ADC,
又∵∠DOF=∠AOB,∠BOA+∠ABE=90°,
∴∠ABE+∠DOF=90°
∴∠ADC+∠DOF=90,
即BE⊥DC.
(2)延长AN到G使AG=BC,连接GE,
,
,
,
,
同理可证:
,
∴,
,,
,
又,
∴,
.
【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.
初中数学苏科版八年级上册第一章 全等三角形1.2 全等三角形当堂达标检测题: 这是一份初中数学苏科版八年级上册第一章 全等三角形1.2 全等三角形当堂达标检测题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
中考数学专项训练(10)全等三角形中常见辅助线含解析答案: 这是一份中考数学专项训练(10)全等三角形中常见辅助线含解析答案,共53页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
苏科版1.2 全等三角形优秀随堂练习题: 这是一份苏科版1.2 全等三角形优秀随堂练习题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。