数学八年级上册2.2 轴对称的性质当堂达标检测题
展开1.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有( )
A.5个B.6个C.7个D.8个
2.如图,直线MN是四边形MANB的对称轴,点P在MN上.则下列结论错误的是( )
A.∠ANM=∠BNMB.∠MAP=∠MBPC.AM=BMD.AP=BN
3.如图,点D是等腰直角△ABC腰BC上的中点,B、B′关于AD对称,且BB′交AD于F,交AC于E,连接FC、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′C;④S△AFE=S△FCE,正确的个数是( )
A.1B.2C.3D.4
4.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是( )
A.4个B.3个C.2个D.1个
5.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )
A.B.C.D.
6.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )
A.B.C.D.
7.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )
A.B.C.D.
8.小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是( )
A.0.5cmB.1cmC.1.5cmD.2cm
9.如图,已知,M,N分别为锐角∠AOB的边OA,OB上的点,ON=6,把△OMN沿MN折叠,点O落在点C处,MC与OB交于点P,若MN=MP=5,则PN=( )
A.2B.3C.D.
10.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为( )
A.60°B.70°C.80°D.90°
二.填空题
11.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有 个
12.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有 个.
13.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于 °.
14.将长方形ABCD纸片按如图所示方式折叠,使得∠A'EB′=50°,其中EF,EG为折痕,则∠AEF+∠BEG= 度.
15.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为 BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为 .
三.解答题
16.如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC=3BP,且∠PAB=15°点C关于直线PA的对称点为D,连接BD,又△APC的PC边上的高为AH
(1)求∠BPD的大小;
(2)判断直线BD,AH是否平行?并说明理由;
(3)证明:∠BAP=∠CAH.
17.如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.
(1)求证:∠BAD=∠EDC;
(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.
18.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.
19.如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是 .
20.如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.
(1)求∠ECF的度数;
(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.
参考答案
一.选择题
1. D.
2. D.
3. B.
4. B.
5. A.
6. B.
7. B.
8. B.
9. D.
10. C.
二.填空题
11.3.
12. 3.
13. 230°.
14. 65.
15. 4.
三.解答题
16.解:(1)∵∠PAB=15°,∠ABC=45°,
∴∠APC=15°+45°=60°,
∵点C关于直线PA的对称点为D,
∴PD=PC,AD=AC,
∴△ADP≌△ACP,
∴∠APC=∠APD=60°,
∴∠BPD=180°﹣120°=60°;
(2)直线BD,AH平行.理由:
∵BC=3BP,
∴BP=PC=PD,
如图,取PD中点E,连接BE,则△BEP为等边三角形,△BDE为等腰三角形,
∴∠BEP=60°,
∴∠BDE=∠BEP=30°,
∴∠DBP=90°,即BD⊥BC.
又∵△APC的PC边上的高为AH,
∴AH⊥BC,
∴BD∥AH;
(3)如图,过点A作BD、DP的垂线,垂足分别为G、F.
∵∠APC=∠APD,即点A在∠DPC的平分线上,
∴AH=AF.
∵∠CBD=90°,∠ABC=45°,
∴∠GBA=∠CBA=45°,
即点A在∠GBC的平分线上,
∴AG=AH,
∴AG=AF,
∴点A在∠GDP的平分线上.
又∵∠BDP=30°,
∴∠GDP=150°,
∴∠ADP=×150°=75°,
∴∠C=∠ADP=75°,
∴Rt△ACH中,∠CAH=15°,
∴∠BAP=∠CAH.
17.解:(1)如图1,∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°.
又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,
∴∠BAD+∠DAC=∠EDC+∠DEC.
∵DE=DA,
∴∠DAC=∠DEC,
∴∠BAD=∠EDC.
(2)猜想:DM=AM.理由如下:
∵点M、E关于直线BC对称,
∴∠MDC=∠EDC,DE=DM.
又由(1)知∠BAD=∠EDC,
∴∠MDC=∠BAD.
∵∠ADC=∠BAD+∠B,
即∠ADM+∠MDC=∠BAD+∠B,
∴∠ADM=∠B=60°.
又∵DA=DE=DM,
∴△ADM是等边三角形,
∴DM=AM.
18.解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,
点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).
19.解:(1)如图所示;
(2)S△ABC=4×5﹣×2×4﹣×3×3﹣×1×5
=20﹣4﹣﹣
=9.
数学八年级上册2.2 轴对称的性质当堂达标检测题: 这是一份数学八年级上册2.2 轴对称的性质当堂达标检测题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级上册2.2 轴对称的性质同步训练题: 这是一份初中数学苏科版八年级上册2.2 轴对称的性质同步训练题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学第二章 轴对称图形2.2 轴对称的性质精品复习练习题: 这是一份数学第二章 轴对称图形2.2 轴对称的性质精品复习练习题,共7页。试卷主要包含了2《轴对称的性质》同步练习卷,附图等内容,欢迎下载使用。