人教B版 (2019)必修 第一册3.2 函数与方程、不等式之间的关系优质第2课时2课时教学设计及反思
展开1.函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且 f(a)f(b)<0 (即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.
2.二分法的定义
(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且 f(a)f(b)<0.
(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.
3.用二分法求函数零点近似值的步骤
给定精确度ε,用二分法求函数f(x)在[a,b]上的零点近似值的步骤是:
第一步 检查|b-a|<2ε是否成立,如果成立,取x1=eq \f(a+b,2),计算结束;如果不成立,转到第二步.
第二步 计算区间[a,b]的中点eq \f(a+b,2)对应的函数值,若feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))=0,取x1=eq \f(a+b,2),计算结束;若feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))≠0,转到第三步.
第三步 若f(a)feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))<0,将eq \f(a+b,2)的值赋给beq \b\lc\(\rc\)(\a\vs4\al\c1(用\f(a+b,2)→b表示,下同)),回到第一步;若feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))f(b)<0,将eq \f(a+b,2)的值赋给a,回到第一步.
1.下列函数不宜用二分法求零点的是( )
A.f(x)=x3-1 B.f(x)=ln x+3
C.f(x)=x2+2eq \r(2)x+2 D.f(x)=-x2+4x-1
C [因为f(x)=x2+2eq \r(2)x+2=(x+eq \r(2))2≥0,不存在小于0的函数值,所以不能用二分法求零点.]
2.若函数f(x)在区间[a,b]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )
A.函数f(x)在区间[a,b]上不可能有零点
B.函数f(x)在区间[a,b]上一定有零点
C.若函数f(x)在区间[a,b]上有零点,则必有f(a)·f(b)<0
D.若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0
D [函数f(x)在区间[a,b]上为单调函数,如果f(a)·f(b)<0,可知函数在(a,b)上有一个零点,
如果f(a)·f(b)>0,可知函数在[a,b]上没有零点,
所以函数f(x)在区间[a,b]上可能没有零点,也可能有零点,所以A不正确;
函数f(x)在区间[a,b]上可能有零点,也可能没有零点;所以B不正确;
若函数f(x)在区间[a,b]上有零点,则可能f(a)·f(b)<0,也可能f(a)·f(b)=0所以C不正确;
若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]
3.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.
①函数f(x)在区间(0,1)内有零点;
②函数f(x)在区间(1,2)内有零点;
③函数f(x)在区间(0,2)内有零点;
④函数f(x)在区间(0,4)内有零点.
④ [∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.]
【例1】 求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.
[证明] 设f(x)=x4-4x-2,其图像是连续曲线.
因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,
所以方程在(-1,0),(0,2)内都有实数解.
从而证明该方程在给定的区间内至少有两个实数解.
一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.
1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是( )
A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0
C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0
D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0
C [对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.]
【例2】 下列图像与x轴均有交点,其中不能用二分法求函数零点的是( )
B [利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.]
二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.
2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是( )
A.(-2.1,-1) B.(1.9,2.3)
C.(4.1,5) D.(5,6.1)
B [只有B中的区间所含零点是不变号零点.]
【例3】 求函数f(x)=x2-5的负零点.(精确度为0.1)
[解] 由于f(-2)=-1<0,f(-3)=4>0,
故取区间(-3,-2)作为计算的初始区间,
用二分法逐次计算,列表如下:
由于|-2.25-(-2.187 5)|=0.062 5<0.1,
所以函数的一个近似负零点可取-2.25.
利用二分法求函数零点应关注三点
1要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.
2用列表法往往能比较清晰地表达函数零点所在的区间.
3根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.
3.证明函数f(x)=2x+3x-6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).
[解] 由于f(1)=-1<0,f(2)=4>0,又函数f(x)在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x0,则x0∈[1,2].下面用二分法求解.
因为|1.187 5-1.25|=0.062 5<0.1,所以函数f(x)=2x+3x-6的精确度为0.1的近似零点可取为1.25.
【例4】 用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).
[解] 令f(x)=2x3+3x-3,
经计算,f(0)=-3<0,f(1)=2>0,f(0)·f(1)<0,
所以函数f(x)在(0,1)内存在零点,
即方程2x3+3x-3=0在(0,1)内有解.
取(0,1)的中点0.5,经计算f(0.5)<0,又f(1)>0,
所以方程2x3+3x-3=0在(0.5,1)内有解.
如此继续下去,得到方程的正实数根所在的区间,如表:
由于|0.687 5-0.75|=0.062 5<0.1,所以0.75可作为方程的一个正实数近似解.
用二分法求方程的近似解应明确两点
(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.
(2)对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.
4.求方程x2=2x+1的一个近似解.(精确度0.1)
[解] 设f(x)=x2-2x-1.
∵f(2)=-1<0,f(3)=2>0.
∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.
取2与3的平均数2.5,
∵f(2.5)=0.25>0,∴2
再取2与2.5的平均数2.25,
∵f(2.25)=-0.437 5<0,
∴2.25
如此继续下去,有
f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);
f(2.375)<0,f(2.437 5)>0⇒x0∈(2.375,2.437 5).
∵|2.375-2.437 5|=0.062 5<0.1,
∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足:
(1)在区间[a,b]上连续不断;
(2)f(a)·f(b)<0,
上述两条的函数方可采用二分法求得零点的近似值.
1.函数y=-x2+8x-16在区间[3,5]上( )
A.没有零点 B.有一个零点
C.有两个零点 D.有无数个零点
B [令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.]
2.用二分法求函数f(x)=x3+x2-2x-2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f(1)=-2,f(1.5)=0.625,f(1.25)≈-0.984,f(1.375)≈-0.260,关于下一步的说法正确的是( )
A.已经达到精确度的要求,可以取1.4作为近似值
B.已经达到精确度的要求,可以取1.375作为近似
C.没有达到精确度的要求,应该接着计算f(1.437 5)
D.没有达到精确度的要求,应该接着计算f(1.312 5)
C [由由二分法知,方程x3+x2-2x-2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f(1.437 5).故选C.]
3.函数图像与x轴均有交点,但不宜用二分法求交点横坐标的是( )
[答案] B
4.用二分法求函数零点,函数的零点总位于区间[an,bn]上,
当|an-bn|<ε时,函数的近似零点eq \f(an+bn,2)与真正零点的误差不超过
A.ε B.eq \f(1,2)ε
C.2ε D.eq \f(1,4)ε
B [根据用“二分法”求函数近似零点的步骤知,当|an-bn|<ε时,区间[an,bn]的中点xn=eq \f(1,2)(an+bn)就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过eq \f(1,2)ε.故选B.]
学 习 目 标
核 心 素 养
1.掌握函数零点的存在性定理,并会判断函数零点的个数. (重点)
2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)
3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)
1.通过存在性定理的学习,培养逻辑推理的素养.
2.通过二分法的学习,提升数据分析,数学建模的学科素养.
3.理解函数与方程之间的联系,提升数学抽象的学科素养.
判断函数零点所在的区间
对二分法概念的理解
用二分法求函数零点
区间
中点的值
中点函数近似值
(-3,-2)
-2.5
1.25
(-2.5,-2)
-2.25
0.062 5
(-2.25,-2)
-2.125
-0.484 4
(-2.25,-2.125)
-2.187 5
-0.214 8
(-2.25,-2.187 5)
-2.218 75
-0.077 1
(a,b)
(a,b)
的中点
f(a)
f(b)
feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))
(1,2)
1.5
f(1)<0
f(2)>0
f(1.5)>0
(1,1.5)
1.25
f(1)<0
f(1.5)>0
f(1.25)>0
(1,1.25)
1.125
f(1)<0
f(1.25)>0
f(1.125)<0
(1.125,1.25)
1.187 5
f(1.125)<0
f(1.25)>0
f(1.187 5)<0
用二分法求方程的近似解
(a,b)
中点c
f(a)
f(b)
feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))
(0,1)
0.5
f(0)<0
f(1)>0
f(0.5)<0
(0.5,1)
0.75
f(0.5)<0
f(1)>0
f(0.75)>0
(0.5,0.75)
0.625
f(0.5)<0
f(0.75)>0
f(0.625)<0
(0.625,0.75)
0.687 5
f(0.625)<0
f(0.75)>0
f(0.687 5)<0
(0.687 5,0.75)
|0.687 5-0.75|=0.062 5<0.1
高中数学人教B版 (2019)必修 第一册2.1.2 一元二次方程的解集及其根与系数的关系第2课时学案设计: 这是一份高中数学人教B版 (2019)必修 第一册2.1.2 一元二次方程的解集及其根与系数的关系第2课时学案设计,共13页。学案主要包含了函数零点存在定理,二分法,用二分法求函数零点的近似值等内容,欢迎下载使用。
人教版高考数学一轮复习第3章导数及其应用第2节第5课时利用导数解决函数的零点问题学案理含解析: 这是一份人教版高考数学一轮复习第3章导数及其应用第2节第5课时利用导数解决函数的零点问题学案理含解析,共5页。
2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 利用导数探究函数的零点问题学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 利用导数探究函数的零点问题学案,共11页。