北师大版七年级下册3 探索三角形全等的条件课时练习
展开1.下列图形具有稳定性的是( )
A.正方形B.矩形C.平行四边形D.直角三角形
2.如图,下列条件中,不能证明△ABC≌△DCB的是( )
A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠DD.AB=DC,∠DBC=∠ACB
3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°
4.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.△ACFB.△ADEC.△ABCD.△BCF
5.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC
6.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠EB.BC=EC,AC=DC
C.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D
7.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论不正确的是( )
A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC
8.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC
9.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )
A.AC∥DFB.∠A=∠DC.AC=DFD.∠ACB=∠F
10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,
其中正确的结论有( )
A.0个B.1个C.2个D.3个
二.填空题(共5小题)
11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是 .
12.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件 ,使△ABC≌△DEF.
13.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是 .(只填一个即可)
14.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .
15.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件 ,使得△EAB≌△BCD.
三.解答题(共5小题)
16.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
17.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.
18.已知:如图,点C为AB中点,CD=BE,CD∥BE.
求证:△ACD≌△CBE.
19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)
20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.
求证:△BED≌△CFD.
北师大版数学七年级(下)同步练习:3.3 探索三角形全等的条件
参考答案与试题解析
一.选择题(共10小题)
1. 解:直角三角形具有稳定性.
故选:D.
2. 解:根据题意知,BC边为公共边.
A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;
B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;
C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;
D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.
故选:D.
3. 解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;
B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;
C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;
D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;
故选:C.
4. 解:根据图象可知△ACD和△ADE全等,
理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,
∴△ACD≌△AED,
即△ACD和△ADE全等,
故选:B.
5. 解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选:B.
6. 解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;
B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;
C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;
D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;
故选:C.
7. 解:∵AD=DE,DO∥AB,
∴OD为△ABE的中位线,
∴OD=OC,
∵在△AOD和△EOD中,
,
∴△AOD≌△EOD(SAS);
∵在△AOD和△BOC中,
,
∴△AOD≌△BOC(SAS);
∵△AOD≌△EOD,
∴△BOC≌△EOD;
故B、C、D均正确.
故选:A.
8. 解:∵AB∥DE,AC∥DF,∴∠A=∠D,
(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;
(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;
(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;
(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;
故选:C.
9. 解:∵AB=DE,∠B=∠DEF,
∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;
当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;
但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;
故选:C.
10. 解:在△ABD与△CBD中,
,
∴△ABD≌△CBD(SSS),
故③正确;
∴∠ADB=∠CDB,
在△AOD与△COD中,
,
∴△AOD≌△COD(SAS),
∴∠AOD=∠COD=90°,AO=OC,
∴AC⊥DB,
故①②正确;
故选:D.
二.填空题(共5小题)
11. 解:添加条件为DC=BC,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS);
若添加条件为∠DAC=∠BAC,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SAS).
故答案为:DC=BC或∠DAC=∠BAC
12. 解:①添加AC=DF.
∵BE=CF,
∴BC=EF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS).
②添加∠B=∠DEF.
∵BE=CF,
∴BC=EF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS).
③添加AB∥DE.
∵BE=CF,
∴BC=EF,
∵AB∥DE,
∴∠B=∠DEF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS).
故答案为:AC=DF(或∠B=∠DEF或AB∥DE).
13. 解:BD=CE,
理由是:∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
故答案为:BD=CE.
14. 解:△ABE和△ACD中,
,
∴△ABE≌△ACD(AAS),
∴AD=AE=2,AC=AB=5,
∴CE=BD=AB﹣AD=3,
故答案为3.
15. 解:∵∠A=∠C=90°,AB=CD,
∴若利用“SAS”,可添加AE=CB,
若利用“HL”,可添加EB=BD,
若利用“ASA”或“AAS”,可添加∠EBD=90°,
若添加∠E=∠DBC,可利用“AAS”证明.
综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).
故答案为:AE=CB.
三.解答题(共5小题)
16. 解:∵∠BCE=∠ACD=90°,
∴∠3+∠4=∠4+∠5,
∴∠3=∠5,
在△ACD中,∠ACD=90°,
∴∠2+∠D=90°,
∵∠BAE=∠1+∠2=90°,
∴∠1=∠D,
在△ABC和△DEC中,
,
∴△ABC≌△DEC(AAS).
17. 解:添加∠BAC=∠DAC.理由如下:
在△ABC与△ADC中,
,
∴△ABC≌△ADC(AAS).
18. 证明:∵C是AB的中点(已知),
∴AC=CB(线段中点的定义).
∵CD∥BE(已知),
∴∠ACD=∠B(两直线平行,同位角相等).
在△ACD和△CBE中,
,
∴△ACD≌△CBE(SAS).
19. AC=DF.
证明:∵BF=EC,
∴BF﹣CF=EC﹣CF,
∴BC=EF,
在△ABC和△DEF中
∴△ABC≌△DEF(SAS).
20. 证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS).
北师大版七年级下册3 探索三角形全等的条件优秀练习: 这是一份北师大版七年级下册<a href="/sx/tb_c9990_t7/?tag_id=28" target="_blank">3 探索三角形全等的条件优秀练习</a>,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中北师大版3 探索三角形全等的条件练习题: 这是一份初中北师大版3 探索三角形全等的条件练习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
4.3探索三角形全等的条件寒假预习自测北师大版数学七年级下册: 这是一份4.3探索三角形全等的条件寒假预习自测北师大版数学七年级下册,共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。