九年级下册5.4 二次函数与一元二次方程精品同步练习题
展开2021年苏科版数学九年级下册
5.4《二次函数与一元二次方程》同步练习卷
一、选择题
1.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2024的值为( ).
A.2022 B.2023 C.2024 D.2025
2.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为( )
A.-1或2 B.-1或1 C.1或2 D.-1或2或1
3.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是( )
A.无解 B.x=1 C.x=-4 D.x=-1或x=4
4.抛物线y=ax2+bx+c的图象如图,则关于x的方程ax2+bx+c-2=0根的情况是( )
A.有两个不相等的实数根
B.有两个异号的实数根
C.有两个相等的实数根
D.没有实数根
5.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,则使函数值y>0成立的x的取值范围是( )
A.x<-4或x>2 B.-4≤x≤2 C.x≤-4或x≥2 D.-4<x<2
6.根据下列表格的对应值:
判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是( )
A.3.22<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26
7.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),
B(8,2),如图所示,能使y1>y2成立的x的取值范围是( )
A.x<-2 B.-2<x<8 C.x>8 D.x<-2或x>8
8.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )
A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤4
9.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=0.5x2+bx+c的顶点,则方程0.5x2+bx+c=1的解的个数是( )
A.0或2 B.0或1 C.1或2 D.0,1或2
10.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是( )
A.m≥﹣2 B.m≥5 C.m≥0 D.m>4
二、填空题
11.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为 .
12.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为 .
13.如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(3,0),对称轴是直线x=1.当y>0时,自变量x的取值范围是 .
14.二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和为 .
15.已知二次函数y=ax2+bx+c(a≠0)中,自变量x与函数值y的部分对应值如下表:
则当y>0时,x的取值范围是 .
16.有一个二次函数的图象,三位同学分别说了它的一些特点:
甲:与x轴只有一个交点;
乙:对称轴是直线x=3;
丙:与y轴的交点到原点的距离为3.
满足上述全部特点的二次函数的解析式为 .
三、解答题
17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.
(1)求点B的坐标.
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
18.如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).
(1)写出C点的坐标,并求出抛物线的解析式;
(2)观察图象直接写出函数值为正数时,自变量的取值范围.
19.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.
20.如图所示,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.
(1)请直接写出点D的坐标.
(2)求二次函数的表达式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
参考答案
1.答案为:D.
2.答案为:D.
3.答案为:D.
4.答案为:C.
5.答案为:D.
6.答案为:C.
7.答案为:D.
8.答案为:D.
9.答案为:D.
10.答案为:A.
11.答案为:x1=1,x2=﹣3.
12.答案为:0.
13.答案为:x<-1或x>3.
14.答案为:4.
15.答案为:-1<x<3.
16.答案为:y=(x-3)2或y=-(x-3)2.
17.解:(1)∵抛物线y=(x+2)2+m经过点A(-1,0),
∴0=1+m,
∴m=-1,
∴抛物线的函数表达式为y=(x+2)2-1=x2+4x+3,
∴点C(0,3).
∵对称轴为直线x=-2,点B,C关于对称轴对称,
∴点B(-4,3).
(2)由图象可知,(x+2)2+m≥kx+b的x的取值范围为x<-4或x>-1.
18.解:(1)∵顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),
∴点C的坐标为(﹣1,0),
设抛物线的解析式为y=a(x﹣3)(x+1),
把A(1,﹣4)代入,可得
﹣4=a(1﹣3)(1+1),解得a=1,
∴抛物线的解析式为y=(x﹣3)(x+1),
即y=x2﹣2x﹣3;
(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.
19.解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
∴抛物线解析式为y=x2+2x+1;
(2)∵y=(x+1)2,
∴顶点A的坐标为(﹣1,0),
∵点C是线段AB的中点,
即点A与点B关于C点对称,
∴B点的横坐标为1,
当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),
设直线AB的解析式为y=kx+b,
把A(﹣1,0),B(1,4)代入得
,解得,
∴直线AB的解析式为y=2x+2.
20.解:(1)D(-2,3).
(2)设二次函数的表达式为y=ax2+bx+c,
由题意得,解得,
∴二次函数的表达式为y=-x2-2x+3.
(3)x<-2或x>1.
苏科版九年级下册5.4 二次函数与一元二次方程精品当堂检测题: 这是一份苏科版九年级下册5.4 二次函数与一元二次方程精品当堂检测题,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版九年级下册5.4 二次函数与一元二次方程课时练习: 这是一份初中数学苏科版九年级下册5.4 二次函数与一元二次方程课时练习,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学苏科版5.4 二次函数与一元二次方程练习题: 这是一份数学苏科版5.4 二次函数与一元二次方程练习题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。