北师大版八年级下册第一章 三角形的证明综合与测试课时训练
展开专题03 三角形的证明 易错题之解答题(24题)
等腰三角形 有关的易错题
1.(2020·江苏盐城市·八年级期末)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
2.(2020·四川八年级期末)如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.
(1)经过多少秒,△BMN为等边三角形;
(2)经过多少秒,△BMN为直角三角形.
3.(2020·浙江八年级期末)
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
4.(2020·天津东丽区·八年级期末)如图1,△ABD,△ACE都是等边三角形,
(1)求证:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度数;
(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.
5.(2020·浙江八年级期末)如图所示,在△ABC 中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.
(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;
(2)若△AEF的周长为8 cm,且BC=4 cm,求△ABC的周长.
6.(2020·肇庆市八年级期末)问题探究:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)证明:AD=BE;
(2)求∠AEB的度数.
问题变式:
(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.
Part2 与 直角三角形 有关的易错题
7.(2020·云南曲靖市·八年级期末)如图是一块地,已知AD=4,CD=3,AB=13,BC=12,且CD⊥AD,求这块地的面积.
8.(2020·河北邯郸市·八年级期末)阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:
(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;
(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.
9.(2020·甘肃陇南市·八年级期末)如图,在四边形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.
(1)求∠BCD的度数;
(2)求四边形ABCD的面积.
10.(2020·河南洛阳市·八年级期末)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.
11.(2020·浙江绍兴市·八年级期末)小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;
(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;
(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.
12.(2020·广东云浮市·八年级期末)如图,在中,,,,.
求的周长;
判断是否是直角三角形,并说明理由.
Part3 与 线段的垂直平分线 有关的易错题
13.(2020·广西玉林市·八年级期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,
(1)若∠BAC=50°,求∠EDA的度数;
(2)求证:直线AD是线段CE的垂直平分线.
14.(2020·山东临沂市·八年级期末)如图,在中,已知,的垂直平分线交于点,交于点,连接
(1)若,则的度数是 度
(2)若,的周长是
①求的长度;
②若点为直线上一点,请你直接写出周长的最小值
15.(2020·河北邯郸市·八年级期末)如图,直线l与m分别是边AC和BC的垂直平分线,它们分别交边AB于点D和点E.
(1)若,则的周长是多少?为什么?
(2)若,求的度数.
16.(2020·云南昆明市·八年级期末)如图,在四边形ABCD中,,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
(1)FC=AD;
(2)AB=BC+AD.
17.(2020·浙江金华市·八年级期末)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
Part4 与 角平分线 有关的易错题
18.(2020·河南三门峡市·八年级期末)在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.
⑴如图①,若,求的度数;
⑵如图②,若,求的度数;
⑶若,直接写出用表示大小的代数式.
19.(2020·甘肃天水市·八年级期末)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
20.(2020·江苏南通市八年级期末)如图,四边形ABCD中,,对角线AC,BD相交于点O,,垂足分别是E、F,求证:.
21.(2020·山东临沂市·八年级期末)已知,如图,在中,、分别是的高和角平分线,若,
(1)求的度数;
(2)写出与的数量关系 ,并证明你的结论
22.(2020·广东深圳市·八年级期末)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.
(1)求证:△ABC是等腰三角形;
(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.
23.(2020·福建泉州市·八年级期末)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)
24.(2020·武穴市八年级期末)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.
(1)求证:∠ABO=∠CAD;
(2)求四边形ABCD的面积;
(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.
数学八年级下册第一章 三角形的证明综合与测试测试题: 这是一份数学八年级下册第一章 三角形的证明综合与测试测试题,共27页。试卷主要包含了问题探究等内容,欢迎下载使用。
初中数学北师大版八年级下册第一章 三角形的证明综合与测试课后测评: 这是一份初中数学北师大版八年级下册第一章 三角形的证明综合与测试课后测评,共9页。
初中数学第一章 三角形的证明综合与测试课堂检测: 这是一份初中数学第一章 三角形的证明综合与测试课堂检测,共7页。