|学案下载
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      《三角形的证明》全章复习与巩固--巩固练习(提高).doc
    • 《三角形的证明》全章复习与巩固--知识讲解(提高).doc
    第10讲《三角形的证明》(提高)学案01
    第10讲《三角形的证明》(提高)学案02
    第10讲《三角形的证明》(提高)学案03
    第10讲《三角形的证明》(提高)学案01
    第10讲《三角形的证明》(提高)学案02
    第10讲《三角形的证明》(提高)学案03
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版八年级下册第一章 三角形的证明综合与测试习题

    展开
    这是一份初中数学北师大版八年级下册第一章 三角形的证明综合与测试习题,文件包含《三角形的证明》全章复习与巩固--巩固练习提高doc、《三角形的证明》全章复习与巩固--知识讲解提高doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    《三角形的证明》全章复习与巩固(提高)

     

    【学习目标】

    1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.

    2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.

    3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.

    【知识网络】

    【要点梳理】

    要点一、等腰三角形

    1.三角形全等的性质及判定

    全等三角形的对应边相等,对应角也相等.

    判定:SSS、SAS、ASA、AAS、HL.

    2.等腰三角形的判定、性质及推论

    性质:等腰三角形的两个底角相等(等边对等角)

    判定:有两个角相等的三角形是等腰三角形(等角对等边)

    推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即三线合一

    3.等边三角形的性质及判定定理

    性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足三线合一的性质;等边三角形是轴对称图形,有3条对称轴.

    判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.

    4.含30°的直角三角形的边的性质

    定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

    要点诠释:

    等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a的等边三角形他的高是,面积是;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.

    要点二、直角三角形

    1.勾股定理及其逆定理

    定理:直角三角形的两条直角边的平方和等于斜边的平方.

    逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.

    2.命题与逆命题

    命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.

    3.直角三角形全等的判定定理

    定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)

    要点诠释:

    勾股定理的逆定理在语言叙述的时候一定要注意,不能说成两条边的平方和等于斜边的平方,应该说成三角形两边的平方和等于第三边的平方.

    直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法.

    要点三、线段的垂直平分线

    1.线段垂直平分线的性质及判定

    性质:线段垂直平分线上的点到这条线段两个端点的距离相等.

    判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.

    2.三角形三边的垂直平分线的性质

    三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.

    3.如何用尺规作图法作线段的垂直平分线

    分别以线段的两个端点A、B为圆心,以大于AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.

    要点诠释:

    注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;

    利用线段的垂直平分线定理可解决两条线段的和距离最短问题.

    要点四、角平分线

    1.角平分线的性质及判定定理

    性质:角平分线上的点到这个角的两边的距离相等;

    判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.

    2.三角形三条角平分线的性质定理

    性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.

    3.如何用尺规作图法作出角平分线

    要点诠释:

    注意区分角平分线性质定理和判定定理,注意二者的应用范围;

    几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.

    【典型例题】

    类型一、能证明它们么

    1. 如图,ACD和BCE都是等腰直角三角形,ACD=BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.

    思路点拨由条件可知CD=AC,BC=CE,且可求得ACE=DCB,所以ACE≌△DCB,即AE=BD,CAE=CDB;又因为对顶角AFC=DFH,所以DHF=ACD=90°,即AEBD.

    答案与解析猜测AE=BD,AEBD;理由如下:
    ∵∠ACD=BCE=90°,
    ∴∠ACD+DCE=BCE+DCE,
    ACE=DCB,
    ∵△ACD和BCE都是等腰直角三角形,
    AC=CD,CE=CB,
    ACE与DCB中,

        

    ∴△ACE≌△DCB(SAS),
    AE=BD,     CAE=CDB;
    ∵∠AFC=DFH,FAC+AFC=90°,
    ∴∠DHF=ACD=90°,
    AEBD.
    故线段AE和BD的数量相等,位置是垂直关系.

    总结升华主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.

    举一反三:

    【变式】将两个全等的直角三角形ABC和DBE按图1方式摆放,其中ACB=DEB=90°,A=D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
    (1)求证:AF+EF=DE;
    (2)若将图1中的DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
    (3)若将图1中的DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.

    【答案】(1)证明:连接BF(如1),
    ∵△ABC≌△DBE(已知),
    BC=BE,AC=DE.
    ∵∠ACB=DEB=90°,
    ∴∠BCF=BEF=90°.
    BF=BF,
    RtBFCRtBFE.
    CF=EF.
    AF+CF=AC,
    AF+EF=DE.
     

    (2)解:画出正确图形如图2.
    (1)中的结论AF+EF=DE仍然成立;

    (3)证明:连接BF,
    ∵△ABC≌△DBE,
    BC=BE,
    ∵∠ACB=DEB=90°,
    ∴△BCF和BEF是直角三角形,
    在RtBCF和RtBEF中,

    ∴△BCF≌△BEF,
    CF=EF;
    ∵△ABC≌△DBE,
    AC=DE,
    AF=AC+FC=DE+EF.

    类型二、直角三角形

    2. 下列说法正确的说法个数是(  )
    两个锐角对应相等的两个直角三角形全等,
    斜边及一锐角对应相等的两个直角三角形全等,
    两条直角边对应相等的两个直角三角形全等,
    一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.

       A.1      B.2         C.3     D.4

    思路点拨根据全等三角形的判定方法及“HL”定理,判断即可;

    答案C.

    解析A、三个角相等,只能判定相似;故本选项错误;
    B、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;
    C、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;
    D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;
    所以,正确的说法个数是3个.
    故选C.

    总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.

    3.(2020•南开区一模)问题背景:

    ABC中,AB、BC、AC三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求ABC的高,而借用网格就能计算出它的面积.

    (1)请你将ABC的面积直接填写在横线上      

    (2)若ABC三边的长分别为、2(m0,n0,且mn),运用构图法可求出这三角形的面积为        

    思路点拨(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;

    (2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.

    答案与解析

    解:(1)SABC=3×3﹣×1×2﹣×2×3﹣×1×3=

    (2)构造ABC如图所示,

    SABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.

    故答案为:(1)3;(2)5mn.

    总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.

    类型三、线段垂直平分线

    4. 如图,在锐角ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.
    (1)求证:直线PQ是线段DE的垂直平分线;
    (2)如果ABC是钝角三角形,BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.

     

    思路点拨(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;
    (2)根据题意,画出图形;结合图形,改写原题.

    答案与解析

    (1)证明:连接PD、PE、QD、QE.
    CEAB,P是BF的中点,
    BEF是直角三角形,且PE是RtBEF斜边的中线,
    PE=BF.
    ADBC,
    BDF是直角三角形,且PD是RtBDF斜边的中线,
    PD=BF=PE,
    点P在线段DE的垂直平分线上.
    同理可证,QD、QE分别是RtADC和RtAEC斜边上的中线,
    QD=AC=QE,
    点Q也在线段DE的垂直平分线上.
    直线PQ垂直平分线段DE.


    (2)当ABC为钝角三角形时,(1)中的结论仍成立.
    如图,ABC是钝角三角形,BAC>90°.
    原题改写为:如图,在钝角ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线  交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.
    求证:直线PQ垂直且平分线段DE.
    证明:连接PD,PE,QD,QE,则PD、PE分别是RtBDF和RtBEF的中线,
    PD=BF,PE=BF,
    PD=PE,
    点P在线段DE的垂直平分线上.
    同理可证QD=QE,
    点Q在线段DE的垂直平分线上.
    直线PQ垂直平分线段DE.

    总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.

    举一反三:

    【变式】ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,A=40度.
    (1)求M的度数;
    (2)若将A的度数改为80°,其余条件不变,再求M的大小;
    (3)你发现了怎样的规律?试证明;
    (4)将(1)中的A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.

    答案

    (1)∵∠B=(180°-A)=70°
    ∴∠M=20°
    (2)同理得M=40°
    (3)规律是:M的大小为A大小的一半,
    证明:设A=α,
    则有B=(180°-α)
    M=90°-(180°-α)=α.
    (4)不成立.
    此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.

    类型四、角平分线

    5. 如图,ABC中,A=60°,ACB的平分线CD和ABC的平分线BE交于点G.求证:GE=GD.

     

    思路点拨连接AG,过点G作GMAB于M,GNAC于N,GFBC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是CAB的平分线;在四边形AMGN中,易得NGM=180°-60°=120°;在BCG中,根据三角形内角和定理,可得CGB=120°,即EGD=120°,∴∠EGN=DGM,证明RtEGNRtDGM(AAS)即可得证GE=GM.

    答案与解析

    解:连接AG,过点G作GMAB于M,GNAC于N,GFBC于F.
    ∵∠A=60°,
    ∴∠ACB+ABC=120°,
    CD,BE是角平分线,
    ∴∠BCG+CBG=120°÷2=60°,
    ∴∠CGB=EGD=120°,
    G是ACB平分线上一点,
    GN=GF
    同理,GF=GM,
    GN=GM
    AG是CAB的平分线,
    ∴∠GAM=GAN=30°,
    ∴∠NGM=NGA+AGM=60°+60°=120°,
    ∴∠EGD=NGM=120°,
    ∴∠EGN=DGM,
    GN=GM,
    RtEGNRtDGM(AAS),
    GE=GD.

    总结升华】此题综合考查角平分线的定义、三角形的内角和全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.

    举一反三:

    【变式】(2020春•澧县期末)如图:在ABC中,C=90° AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;
    明:(1)CF=EB.
         (2)AB=AF+2EB.

    答案

    证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,

    ∴DE=DC,

    ∵在Rt△DCF和Rt△DEB中,

    ∴Rt△CDF≌Rt△EBD(HL).

    ∴CF=EB;

    (2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,

    ∴CD=DE.

    在△ADC与△ADE中,

    ∴△ADC≌△ADE(HL),

    ∴AC=AE,

    ∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.

     

    相关学案

    初中数学北师大版九年级下册1 圆学案设计: 这是一份初中数学北师大版九年级下册1 圆学案设计,文件包含正多边形和圆巩固练习提高doc、正多边形和圆知识讲解提高doc等2份学案配套教学资源,其中学案共16页, 欢迎下载使用。

    初中数学北师大版八年级上册第三章 位置与坐标综合与测试导学案: 这是一份初中数学北师大版八年级上册第三章 位置与坐标综合与测试导学案,文件包含《平面直角坐标系》全章复习与巩固提高知识讲解doc、《平面直角坐标系》全章复习与巩固提高巩固练习doc等2份学案配套教学资源,其中学案共16页, 欢迎下载使用。

    北师大版八年级下册第一章 三角形的证明综合与测试课时作业: 这是一份北师大版八年级下册第一章 三角形的证明综合与测试课时作业,文件包含《三角形的证明》全章复习与巩固--知识讲解基础doc、《三角形的证明》全章复习与巩固--巩固练习基础doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第10讲《三角形的证明》(提高)学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map