初中数学人教版八年级下册第十九章 一次函数19.2 一次函数19.2.2 一次函数复习练习题
展开
这是一份初中数学人教版八年级下册第十九章 一次函数19.2 一次函数19.2.2 一次函数复习练习题,共9页。试卷主要包含了5 h追上甲车;,25或3,5×4x=2x;等内容,欢迎下载使用。
人教版八年级数学下册 一次函数图象性质
同步培优
一 、选择题
在△ABC中,点O是△ABC的内心,连接OB、OC,过点O作EF∥BC分别交AB、AC于点E、F,已知BC=a(a是常数),设△ABC的周长为y,△AEF的周长为x,在下列图象中,大致表示y与x之间的函数关系的是( )
一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为( )
A.20 L B.25 L C.27L D.30 L
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为( )
A.4 B.8 C.16 D.8
若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )
甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:
①A,B两城相距300 km;
②乙车比甲车晚出发1 h,却早到1 h;
③乙车出发后2.5 h追上甲车;
④当甲、乙两车相距50 km时,t=1.25或3.75.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(千米),甲行驶的时间为t(小时),s与t之间的函数关系如图所示.有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中正确结论的个数是( )
A.4 B.3 C.2 D.1
已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为( )
A.x<﹣1 B.x>﹣1 C.x>1 D.x<1
如图所示,函数y=mx+m的图象可能是下列图象中的( )
如图,点A的坐标为(﹣2,0),点B在直线y=x上运动,当线段AB最短时点B的坐标为( )
A.(0,0) B.(﹣1,﹣1) C.(,﹣) D.(﹣,﹣)
甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出发1h D.甲比乙晚到B地3h
已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
A.4 B.5 C.6 D.7
如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长( )
A.逐渐变大 B.不变 C.逐渐变小 D.先变小后变大
二 、填空题
已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为 .
已知一次函数y=2x﹣b与两个坐标轴围成的三角形面积为9,则b= .
如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要________s能把小水杯注满.
若一次函数y=2kx与y=kx+b(k≠0,b≠0)的图象相交于点(2,﹣4),点(m,n)在函数y=kx+b的图象上,则m2+2mn+n2= .
如图,在平面直角坐标系中,已知点A(0,4),B(﹣3,0),连接AB.将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则点C的坐标为 .
在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是 .
三 、解答题
如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,4).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,△OPA的面积为12,并说明理由.
如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,﹣10).
(1)求这条直线的解析式;
(2)若该直线分别与x轴、y轴交于A、B两点,点P在x轴上,且S△PAB=6S△OAB,求点P坐标.
如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.
(1)直接写出A、B两点的坐标 ;
(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;
(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标 .
在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.
如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:
(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;
(2)求出点P在CD上运动时S与t之间的函数解析式;
(3)当t为何值时,三角形APD的面积为10 cm2?
在直角坐标系中,如何求两条平行线之间的距离.我们定义:若直线l1//l2,l1:Ax+By+C1=0,l2:Ax+By+C2=0,则直线l1与直线l2的距离d=.例如:直线l1:x+y-1=0,直线l2:x+y+3=0,则l1与l2之间的距离d=.根据以上信息,解决下列问题:
(1)若直线l1:3x+4y+1=0,直线l2:3x+4y-4=0,求l1与l2之间的距离;
(2)若直线l1:2x-4y+5=0,直线l2:x-2y+=0,求l1与l2之间的距离.
参考答案
C
B
C
C
B
B
A
答案为:D.
B
C
C
答案为:B.
答案为:﹣6或﹣12.
答案是:±6;
答案为:5.
答案为:4;
答案为:(0,1.5);
答案为:(1.5,1)(0.5,﹣1).
解:(1)把E(﹣8,0)代入y=kx+6得﹣8k+6=0,解得k=;
(2)直线EF的解析式为y=x+6,
设P点坐标为(x, x+6),所以S=•4•(﹣x)=﹣2x(﹣8<x<0);
(3)当S=12,则﹣2x=12,解得x=﹣6,所以y=×(﹣6)+6=,
所以P点坐标为(﹣6,).
解:
解:(1)当y=0时, x+1=0,解得x=﹣2,则A(﹣2,0),
当x=0时,y=x+1=1,则B(0,1);
(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);
当BP=BA时,P点坐标为(2,0);
当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,
设P(t,0),则OA=t+2,OB=t+2,
在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);
(3)如图2,设D(x, x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,
∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);
当x<0时,∵S△BCD﹣S△ABC=S△ACD,
∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),
综上所述,D点坐标为(2,2)或(﹣6,﹣2).
故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).
解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数解析式不相同,
故应分段求出相应的函数解析式.
①当点P在边AB上运动,即0≤x<3时,y=0.5×4x=2x;
②当点P在边BC上运动,即3≤x<7时,y=0.5×4×3=6;
③当点P在边CD上运动,即7≤x≤10时,y=0.5×4(10-x)=-2x+20.
(2)函数图象如图所示.
解:(1)6;2;18
(2)PD=6-2(t-12)=30-2t,S=0.5AD·PD=0.5×6×(30-2t)=90-6t,
即点P在CD上运动时S与t之间的函数解析式为S=90-6t(12≤t≤15).
(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=10/3;
当12≤t≤15时,S=90-6t,将S=10代入,得90-6t=10,解得t=40/3.
所以当t为10/3或40/3时,三角形APD的面积为10 cm2.
解:(1)d=1;(2)d=.
相关试卷
这是一份人教版八年级下册19.2.2 一次函数课时作业,共8页。试卷主要包含了四象限 B. 第一等内容,欢迎下载使用。
这是一份八年级下册第十九章 一次函数19.2 一次函数19.2.2 一次函数练习,共5页。
这是一份人教版八年级数学下册《一次函数图象性质》期末专题复习(含答案),共10页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。