终身会员
搜索
    上传资料 赚现金
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件
    立即下载
    加入资料篮
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件01
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件02
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件03
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件04
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件05
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件06
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件07
    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件08
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件

    展开
    这是一份湘教版数学八年级下册 1.1 第1课时 直角三角形的性质和判定 课件,共30页。

    1.1 直角三角形的性质和判定(Ⅰ) 第1章 直角三角形 第1课时 直角三角形的性质与判定 在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我要比你大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?” 老二很纳闷.你知道其中的道理吗?内角三兄弟之争情境引入 老大的度数为 90°,老二若是比老大的度数大,那么老二的度数要大于 90°,而三角形的内角和为 180°,相互矛盾,因而是不可能的.在这个家里,我是永远的老大.问题1:如下图所示是我们常用的三角板,它们两锐角的度数之和分别为多少度?直角三角形的两个锐角互余问题引导问题2:如图,在直角 △ABC 中, ∠C = 90°,两锐角的和等于多少呢? 在直角△ABC 中,由三角形内角和定理,得∠A +∠B +∠C = 180°,因为 ∠C = 90°,故∠A + ∠B = 90°.思考:由此,你可以得到直角三角形有什么性质呢?直角三角形的两个锐角互余.  应用格式:在 Rt△ABC 中,∵∠C = 90°,∴∠A +∠B = 90°. 直角三角形的表示:直角三角形可以用符号“Rt△”表示,直角三角形 ABC 可以写成 Rt△ABC .总结归纳方法一(利用平行的判定和性质):∵∠B = ∠C = 90°,∴AB∥CD,∴∠A = ∠D.方法二(利用直角三角形的性质):∵∠B = ∠C = 90°,∴∠A+∠AOB = 90°,∠D+∠COD = 90°.∵∠AOB = ∠COD,∴∠A = ∠D. 例1(1)如图①,∠B =∠C = 90°,AD 交BC 于点 O,∠A 与∠D 有什么关系?图①典例精析O解:∠A = ∠C. 理由如下:∵∠B = ∠D = 90°,∴∠A +∠AOB = 90°,∠C +∠COD = 90°.∵∠AOB = ∠COD,∴∠A = ∠C.(2)如图②,∠B = ∠D = 90°,AD 交 BC 于点 O,∠A 与 ∠C 有什么关系?请说明理由.图②与图①有哪些共同点与不同点?O例2 如图, ∠C = ∠D = 90°,AD,BC 相交于点 E. ∠CAE 与 ∠DBE 有什么关系?为什么?解:在 Rt△ACE 中,∠CAE = 90° - ∠AEC.在 Rt△BDE 中,∠DBE = 90° -∠BED. ∵ ∠AEC = ∠BED,∴ ∠CAE = ∠DBE.解:∵CD⊥AB 于点 D,BE⊥AC 于点 E, ∴∠BEA = ∠BDF = 90°, ∴∠ABE +∠A = 90°, ∠ABE +∠DFB = 90°. ∴∠A = ∠DFB. ∵∠DFB +∠BFC = 180°, ∴∠A +∠BFC = 180°.【变式题】如图,△ABC 中,CD⊥AB 于 D,BE⊥AC于 E,CD,BE 相交于点 F,∠A 与 ∠BFC 又有什么关系?为什么?思考:通过前面的例题,你能画出这些题型的基本 图形吗?基本图形∠A =∠C∠A =∠D总结归纳 如图,在 △ABC 中, ∠A +∠B = 90°, 那么 △ABC 是直角三角形吗?问题:有两个角互余的三角形是直角三角形吗? 在 △ABC 中,因为 ∠A +∠B +∠C = 180°, 又∠A +∠B = 90°,所以∠C = 90°. 于是 △ABC 是直角三角形.有两个角互余的三角形是直角三角形ABC应用格式:在 △ABC 中,∵ ∠A +∠B = 90°,∴ △ABC 是直角三角形.有两个角互余的三角形是直角三角形.  总结归纳典例精析例3 如图,∠C = 90°,∠1 = ∠2,△ADE 是直角三 角形吗?为什么?解:在 Rt△ABC 中,∠2 + ∠A = 90°.∵∠1 = ∠2, ∴∠1 + ∠A = 90°.即 △ADE 是直角三角形.例4 如图,CE⊥AD,垂足为 E,∠A = ∠C,△ABD是直角三角形吗?为什么?解:△ABD 是直角三角形. 理由如下:∵CE⊥AD,∴∠CED = 90°.∴∠C +∠D = 90°.∵∠A = ∠C,∴∠A +∠D = 90°.∴△ABD 是直角三角形. 问题: 如图,画一个 Rt△ABC, 并作出斜边 AB 上的中线 CD,比较线段 CD 与线段 AB 之间长度,你能得出什么结论?直角三角形斜边上的中线等于斜边的一半线段 CD 比线段 AB 短.猜想:直角三角形斜边上的中线等于斜边的一半.试给出数学证明.图1-4证一证∴ 点 D' 是斜边上的中点,即 CD' 是斜边 AB 的中线.又∵∠A +∠B = 90°,∠D′CA +∠D′CB = 90°,∴ ∠B = ∠D′CB. ∴CD′ = BD′. 直角三角形斜边上的中线等于斜边的一半.例5 已知:如图,CD 是 △ABC 的 AB 边上的中线,且 . 求证:△ABC 是直角三角形.证明:∴ ∠1 = ∠A,∠2 = ∠B .∵∠A +∠B +∠ACB = 180°,即∠A +∠B +∠1 +∠2 = 180°, 2(∠A +∠B) = 180°.∴ ∠A +∠B = 90°.∴ △ABC 是直角三角形.解:∵AD 是△ABC 的高,E、F 分别是 AB、AC 的中 点,∴DE=AE= AB= ×10=5, DF=AF= AC= ×8=4.∴四边形 AEDF 的周长= AE+DE+DF+AF = 5+5+4+4 = 18.例6 如图,在 △ABC 中,AD 是高,E、F 分别是 AB、AC 的中点. (1) 若AB = 10,AC = 8,求四边形 AEDF 的周长;(2)求证:EF 垂直平分 AD.证明:∵DE = AE,DF = AF,∴E、F 在线段 AD 的垂直平分线上. ∴EF 垂直平分 AD. 当已知条件含有线段的中点、直角三角形时,可联想到直角三角形斜边上的中线的性质进行求解.如图,在 △ABC 中,∠ABC = 90°,BD 是斜边 AC 上的中线.(1)若 BD = 3 cm,则 AC =_____cm;(2)若∠C = 30°, AB = 5 cm,则 AC =_____cm, BD = _____cm.6105练一练归纳总结体现直角三角形斜边上中线的性质的常见图形3. 在 △ABC 中,若∠A = 43°,∠B = 47°,则这个三角形是____________.1. 如图,一张长方形纸片,剪去一部分后得到一个三 角形,则图中∠1 + ∠2 的度数是________.90°2. 如图,AB、CD 相交于点 O,AC⊥CD 于点 C,若 ∠BOD = 38,则∠A = _____°.52第1题图第2题图直角三角形4. 在一个直角三角形中,有一个锐角等于 40°,则另 一个锐角的度数是(  ) A.40° B.50° C.60° D.70° B5. 具备下列条件的 △ABC 中,不是直角三角形的是 (   ) A.∠A + ∠B = ∠C B.∠A - ∠B = ∠C C.∠A∶∠B∶∠C = 1∶2∶3 D.∠A = ∠B = 3∠C D6. 如图所示,△ABC 为直角三角形,∠ACB = 90°, CD⊥AB,与 ∠1 互余的角有(  ) A.∠B B.∠A C.∠BCD 和 ∠A D.∠BCD C7. 如图,在 Rt△ABC 中,∠ACB = 90°,D 是 AB 上一点,且∠ACD = ∠B.求证:△ACD 是直角三角形.证明:∵∠ACB = 90°,∴∠A +∠B = 90°.∵∠ACD = ∠B,∴∠A +∠ACD = 90°.∴△ACD 是直角三角形.8. 如图,已知 BD,CE 是 △ABC 不同边上的高,点G, F 分别是 BC,DE 的中点,试说明 GF⊥DE.解:连接 EG,DG. ∵BD,CE 是△ABC的高, ∴∠BDC = ∠BEC = 90°. ∵点 G 是 BC 的中点, ∴EG = BC,DG = BC. ∴EG = DG. 又∵点 F 是 DE 的中点,∴GF⊥DE. 在直角三角形中,遇到斜边中点常作斜边中线,从而将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.直角三角形的性质与判定性质直角三角形的两个锐角互余判定有两个角互余的三角形是直角三角形直角三角形斜边上的中线等于斜边的一半.
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map