还剩3页未读,
继续阅读
所属成套资源:湘教版数学八年级下册教案全册
成套系列资料,整套一键下载
- 第1课时 角平分线的性质定理及其逆定理 教案 教案 0 次下载
- 第2课时 角平分线性质定理及其逆定理的综合应用 教案 教案 0 次下载
- 第2课时 含30°角的直角三角形的性质及其应用 教案 教案 0 次下载
- 第1课时 多边形的内角和 教案 教案 0 次下载
- 第2课时 多边形的外角和 教案 教案 0 次下载
第1课时 直角三角形的性质和判定 教案
展开
这是一份第1课时 直角三角形的性质和判定 教案,共5页。
第1章 直角三角形1.1 直角三角形的性质和判定(Ⅰ)第1课时 直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题 什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1 直角三角形两锐角互余思考 如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2 利用两锐角互余判断三角形是直角三角形思考 如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形的一种判定方法.结论 有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3 直角三角形斜边上的中线等于斜边的一半的探索过程思考 (1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识进行提炼和归纳.问题4 教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD沿AC边折叠,使点D落在点E处.求证:EC∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B 2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CD是AB边上的中线,∠ACB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题.2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.
第1章 直角三角形1.1 直角三角形的性质和判定(Ⅰ)第1课时 直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题 什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1 直角三角形两锐角互余思考 如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2 利用两锐角互余判断三角形是直角三角形思考 如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形的一种判定方法.结论 有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3 直角三角形斜边上的中线等于斜边的一半的探索过程思考 (1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识进行提炼和归纳.问题4 教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD沿AC边折叠,使点D落在点E处.求证:EC∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B 2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CD是AB边上的中线,∠ACB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题.2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.
相关资料
更多