苏科版八年级上册第一章 全等三角形综合与测试一课一练
展开满分120分
姓名:___________班级:___________学号:___________成绩:___________
一.选择题(共10小题,满分30分,每小题3分)
1.下列图形是全等图形的是( )
A. B. C. D.
2.如果两个图形全等,那么这两个图形必定是( )
A.形状大小均相同B.形状相同,但大小不同
C.大小相同,但形状不同D.形状大小均不相同
3.下列说法正确的是( )
A.全等三角形是指形状相同的两个三角形
B.全等三角形是指面积相等的两个三角形
C.两个等边三角形是全等三角形
D.全等三角形是指两个能完全重合的三角形
4.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理( )
A.1;SASB.2;ASAC.3;ASAD.4;SAS
5.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为( )
A.30°B.45°C.60°D.15°
6.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是( )
A.BF=ECB.AC=DFC.∠B=∠ED.BF=FC
7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE
8.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是( )
A.40°B.50°C.60°D.70°
9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是( )
A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)
10.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个B.2个C.3个D.4个
二.填空题(共7小题,满分28分,每小题4分)
11.两个三角形全等的判定方法有 , , , (用字母表示).
12.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α= °.
13.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= .
14.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= .
15.已知:如图,AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△ ≌△ (HL).
16.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,
连结BF,CE.下列说法:①△ABD和△ACD面积相等; ②∠BAD=∠CAD;
③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有 .(把你认为正确的序号都填上)
17.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为 秒时,△ABP和△DCE全等.
三.解答题(共8小题,满分62分)
18.(6分)如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.
19.(6分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,求图中实线所围成的图形的面积S.
20.(7分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:
(1)△ABC≌△DEF;
(2)OA=OD.
21.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.
(1)求证:△ABC≌△DCE;
(2)若∠B=50°,∠D=22°,求∠AFG的度数.
22.(8分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;
(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;
(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.
23.(9分)如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.
(1)求证:△ACD≌△BCE;
(2)求证:CH平分∠AHE;
(3)求∠CHE的度数.(用含α的式子表示)
24.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
25.(9分)如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.
(1)当∠BDA=100°时,∠EDC= °,∠DEC= °.
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.
参考答案
一.选择题(共10小题,满分30分,每小题3分)
1.解:A、两个图形相似,错误;
B、两个图形全等,正确;
C、两个图形相似,错误;
D、两个图形不全等,错误;
故选:B.
2.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.
故选:A.
3.解:A、全等三角形是指形状相同、大小相等的两个三角形,故本选项错误;
B、全等三角形的面积相等,但是面积相等的两个三角形不一定全等,故本选项错误;
C、边长相等的两个等边三角形是全等三角形,故本选项错误;
D、全等三角形是指两个能完全重合的三角形,故本选项正确.
故选:D.
4.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.
故选:B.
5.解:∵△ABC≌△A′B′C,
∴∠ACB=∠A′CB′,
∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,
∴∠ACA′=∠BCB′=30°,
故选:A.
6.解:∵AB∥ED,AB=DE,
∴∠B=∠E,
∴当BF=EC时,
可得BC=EF,
可利用“SAS”判断△ABC≌△DEF.
故选:A.
7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选:D.
8.解:作DG⊥AB于G,DH⊥BC于H,
∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,
∴DH=DG,
在Rt△DEG和Rt△DFH中,
,
∴Rt△DEG≌Rt△DFH(HL),
∴∠DEG=∠DFH,又∠DEG+∠BED=180°,
∴∠BFD+∠BED=180°,
∴∠BFD的度数=180°﹣140°=40°,
故选:A.
9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).
故选:D.
10.解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,
故选:C.
二.填空题(共7小题,满分28分,每小题4分)
11.解:全等三角形的判定定理有SAS,ASA,AAS,SSS.
故答案为:SAS,ASA,AAS,SSS.
12.解:∵图中的两个三角形全等,
∴∠α=68°.
故答案为68.
13.解:∵点C是AD的中点,也是BE的中点,
∴AC=DC,BC=EC,
∵在△ACB和△DCE中,
,
∴△ACB≌△DCE(SAS),
∴DE=AB,
∵DE=20米,
∴AB=20米,
故答案为:20米.
14.解:如图所示:
由题意可得:∠1=∠3,
则∠1+∠2=∠2+∠3=45°.
故答案为:45°.
15.证明:∵在△ABE和△DCF中,
AE⊥BC,DF⊥BC,AE=DF,AB=DC,
符合直角三角形全等条件HL,
所以△ABE≌△DCF,
故填:ABE;DCF.
16.解:∵BD=CD,点A到BD、CD的距离相等,
∴△ABD和△ACD面积相等,故①正确;
∵AD为△ABC的中线,
∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;
在△BDF和△CDE中,
∴△BDF≌△CDE,故③正确;
∴∠F=∠DEC,
∴BF∥CE,故④正确;
∵△BDF≌△CDE,
∴CE=BF,故⑤错误,
故答案为:①③④.
17.解:
设点P的运动时间为t秒,则BP=2t,
当点P在线段BC上时,
∵四边形ABCD为长方形,
∴AB=CD,∠B=∠DCE=90°,
此时有△ABP≌△DCE,
∴BP=CE,即2t=2,解得t=1;
当点P在线段AD上时,
∵AB=4,AD=6,
∴BC=6,CD=4,
∴AP=BC+CD+DA=6+4+6=16,
∴AP=16﹣2t,
此时有△ABP≌△CDE,
∴AP=CE,即16﹣2t=2,解得t=7;
综上可知当t为1秒或7秒时,△ABP和△CDE全等.
故答案为:1或7.
三.解答题(共8小题,满分62分)
18.解:∵△ACF≌△ADE,AD=12,AE=5,
∴AC=AD=12,AE=AF=5,
∴DF=12﹣5=7.
19.解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,
∴∠BAG=∠AEF,
∵在△AEF和△BAG中,
,
∴△AEF≌△BAG,(AAS)
同理△BCG≌△CDH,
∴AF=BG,AG=EF,GC=DH,BG=CH,
∵梯形DEFH的面积=(EF+DH)•FH=80,
S△AEF=S△ABG=AF•AE=9,
S△BCG=S△CDH=CH•DH=6,
∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50.
20.证明:(1)∵BF=CE,
∴BF+FC=CE+FC,
即BC=EF,
∵OF=OC,
∴∠OCF=∠OFC,
在△ABC与△DEF中
,
∴△ABC≌△DEF(ASA);
(2)∵△ABC≌△DEF,
∴AC=DF,
∵OF=OC,
∴AC﹣OC=DF﹣OF,
即OA=OD.
21.(1)证明:∵CE∥AB,
∴∠B=∠DCE,
在△ABC与△DCE中,
,
∴△ABC≌△DCE(SAS);
(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,
∴∠ECD=∠B=50°,∠A=∠D=22°,
∵CE∥AB,
∴∠ACE=∠A=22°,
∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,
∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.
22.(1)证明:∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°,
在Rt△ABD和Rt△ACE中,
∵,
∴Rt△ABD≌Rt△CAE.
∴∠DAB=∠ECA,∠DBA=∠EAC.
∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,
∴∠BAD+∠CAE=90°.
∠BAC=180°﹣(∠BAD+∠CAE)=90°.
∴AB⊥AC.
(2)AB⊥AC.理由如下:
同(1)一样可证得Rt△ABD≌Rt△ACE.
∴∠DAB=∠ECA,∠DBA=∠EAC,
∵∠CAE+∠ECA=90°,
∴∠CAE+∠BAD=90°,即∠BAC=90°,
∴AB⊥AC.
23.(1)证明:∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,
∵△ACD≌△BCE,
∴∠CAM=∠CBN,
在△ACM和△BCN中,
,
∴△ACM≌△BCN(AAS),
∴CM=CN,
∴CH平分∠AHE;
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠AMC=∠AMC,
∴∠AHB=∠ACB=α,
∴∠AHE=180°﹣α,
∴∠CHE=∠AHE=90°﹣α.
24.证明:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,
∴∠BAC=∠DAE,
在△BAC和△DAE中,
,
∴△BAC≌△DAE(SAS);
(2)∵∠CAE=90°,AC=AE,
∴∠E=45°,
由(1)知△BAC≌△DAE,
∴∠BCA=∠E=45°,
∵AF⊥BC,
∴∠CFA=90°,
∴∠CAF=45°,
∴∠FAE=∠FAC+∠CAE=45°+90°=135°;
(3)延长BF到G,使得FG=FB,
∵AF⊥BG,
∴∠AFG=∠AFB=90°,
在△AFB和△AFG中,
,
∴△AFB≌△AFG(SAS),
∴AB=AG,∠ABF=∠G,
∵△BAC≌△DAE,
∴AB=AD,∠CBA=∠EDA,CB=ED,
∴AG=AD,∠ABF=∠CDA,
∴∠G=∠CDA,
∵∠GCA=∠DCA=45°,
在△CGA和△CDA中,
,
∴△CGA≌△CDA(AAS),
∴CG=CD,
∵CG=CB+BF+FG=CB+2BF=DE+2BF,
∴CD=2BF+DE.
25.解:(1)∵∠BDA=100°,∠ADE=50°,
∴∠ED=180°﹣100°﹣50°=30°,
∵∠C=50°,
∴∠DEC=180°﹣50°﹣30°=100°,
故答案为:30,100;
(2)当DC=3时,△ABD≌△DCE,理由如下:
∵AB=3,DC=3,
∴AB=DC,
∵∠B=50°,∠ADE=50°,
∴∠B=∠ADE,
∵∠ADB+∠ADE+∠EDC=180°∠DEC+∠C+∠EDC=180°,
∴∠ADB=∠DEC,
在△ABD和△DCE中,
∴△ABD≌△DCE;
(3)可以,理由如下:
∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,
分三种情况讨论:
①当DA=DE时,∠DAE=∠DEA,
∵∠ADE=50°,∠ADE+∠DAE+∠DEA=180°,
∴∠DAE=(180°﹣50°)÷2=65°,
∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,
∵∠B+∠BAD+∠BDA=180°,
∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°
②当AD=AE时,∠AED=∠ADE=50°
∵∠ADE+∠AED+∠DAE=180°
∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,
又∵∠BAC=80°,
∴∠DAE=∠BAE,
∴点D与点B重合,不合题意.
③当EA=ED时,∠DAE=∠ADE=50°,
∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,
∵∠B+∠BAD+∠BDA=180°,
∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,
综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.
初中数学苏科版八年级上册第一章 全等三角形综合与测试单元测试课堂检测: 这是一份初中数学苏科版八年级上册第一章 全等三角形综合与测试单元测试课堂检测,共14页。试卷主要包含了下列说法等内容,欢迎下载使用。
初中数学苏科版八年级上册第一章 全等三角形综合与测试综合训练题: 这是一份初中数学苏科版八年级上册第一章 全等三角形综合与测试综合训练题,共15页。
苏科版八年级上册第一章 全等三角形综合与测试单元测试巩固练习: 这是一份苏科版八年级上册第一章 全等三角形综合与测试单元测试巩固练习,共15页。试卷主要包含了下列说法正确的是,已知等内容,欢迎下载使用。