初中数学苏科版九年级上册2.1 圆精练
展开重难点06 两圆一中垂构造等腰三角形模型
1.识别几何模型。
2.利用“两圆一中垂构造等腰三角形”模型解决问题
分类讨论:
若AB=AC,则点C在以点A 为圆心,线段AB的长为半径的圆上;
若BA=BC,则点C在以点B为圆心,线段AB的长为半径的圆上;
若CA=CB,则点C在线段AB的垂直平分线PQ上以上简称“两圆一中垂”
“两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点MN以及线段AB中点E(共除去5个点)需要注意细节
一.选择题(共5小题)
1.(2021•无棣县二模)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是( )
A.(2,0) B.(4,0) C.(﹣,0) D.(3,0)
2.(2022•建湖县一模)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且△ABC是等腰三角形,那么点C的个数为( )
A.1 B.2 C.3 D.4
3.(2022•青岛二模)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为x轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为( )
A.1 B.2 C.3 D.4
4.(2020•武汉模拟)平面直角坐标系中,A(3,3)、B(0,5).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.3 B.4 C.5 D.7
5.(2020•龙岗区模拟)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
二.解答题(共1小题)
6.(2022•开州区模拟)如图,在等腰Rt△ABC中,AB=BC,D是BC的中点,E为AC边上任意一点,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF,交AB于点G.
(1)如图1,若AB=6,AE=,求ED的长;
(2)如图2,点G恰好是EF的中点,连接BF,求证:CD=BF;
(3)如图3,若AB=4,连接CF,当CF+BF取得最小值时.请直接写出S△CEF的值.
一.选择题(共5小题)
1.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有( )
A.8个 B.4个 C.5个 D.6个
2.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有( )
A.2个 B.4个 C.6个 D.8个
3.如图,在平面直角坐标系中,已知点A(3,3),B(0,5),若在坐标轴上找一点C,使得△ABC是等腰三角形,则这样的点C有( )
A.4个 B.5个 C.6个 D.7个
4.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
5.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有( )
A.4个 B.5个 C.6个 D.7个
二.填空题(共1小题)
6.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 .
苏科版九年级上册2.1 圆练习题: 这是一份苏科版九年级上册2.1 圆练习题,文件包含重难点07两垂一圆构造直角三角形模型学生版docx、重难点07两垂一圆构造直角三角形模型老师版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
苏科版九年级上册2.1 圆复习练习题: 这是一份苏科版九年级上册2.1 圆复习练习题,文件包含重难点02“四点共圆”模型学生版docx、重难点02“四点共圆”模型老师版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
初中苏科版2.1 圆课堂检测: 这是一份初中苏科版2.1 圆课堂检测,文件包含重难点01讲圆幂定理2种题型学生版docx、重难点01讲圆幂定理2种题型老师版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。