模型34 两圆中垂构造等腰三角形(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用)
展开
【模型】已知点A,B是平面内两点,再找一点C,使得△ABC为等腰三角形. |
【结论】分类讨论: 若AB=AC,则点C在以点A为圆心,线段AB的长为半径的圆上; 若BA=BC,则点C在以点B为圆心,线段AB的长为半径的圆上; 若CA=CB,则点C在线段AB的垂直平分线PQ上.以上简称“两圆一中垂”. “两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点M,N以及线段AB中点E(共除去5个点),需要注意细节. |
【例1】.如图,平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,你能否将点C的坐标表示出来?
变式训练
【变式1-1】.直线y=﹣x+2与x轴、y轴的正半轴分别交A、B两点,点P是直线y=﹣x+2上的一点,当△AOP为等腰三角形时,则点P的坐标为 .
【变式1-2】.如图,在矩形ABCD中,AB=5,BC=3,点P为边AB上一动点,连接CP,DP.当△CDP为等腰三角形时,AP的值为 .
【例2】.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 .
变式训练
【变式2-1】.直线y=﹣x+4与x轴、y轴的正半轴分别交A、B两点,点P是直线y=﹣x+4上的一点,当△AOP为等腰三角形时,则点P的坐标为 .
【变式2-2】.如图,平面直角坐标系中,直线y=﹣x+与直线y=x+交于点B,与x轴交于点A.
(1)求点B的坐标.
(2)若点C在x轴上,且△ABC是以AB为腰的等腰三角形,求点C的坐标.
1.如图,在平面直角坐标系中,已知点A(3,3),B(0,5),若在坐标轴上找一点C,使得△ABC是等腰三角形,则这样的点C有( )
A.4个 B.5个 C.6个 D.7个
2.如图,已知函数y=x+的图象与x轴交于点A,与y轴交于点B,点P是x轴上一点,若△PAB为等腰三角形,则点P的坐标不可能是( )
A.(﹣3﹣2,0) B.(3,0) C.(﹣1,0) D.(2,0)
3.在平面直角坐标系xOy中,点A的坐标为(0,2),点B的坐标为(,0),点C在x轴上.若△ABC为等腰三角形时,∠ABC=30°,则点C的坐标为( )
A.(﹣2,0),(,0),(﹣4,0)
B.(﹣2,0),(,0),(4+,0)
C.(﹣2,0),(,0),(,0)
D.(﹣2,0),(1,0),(4﹣,0)
4.已知平面直角坐标系中有A(2,2)、B(4,0)两点,若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5个 B.6个 C.7个 D.8个
5.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为( )
A.1+ B.1﹣ C.﹣1 D.1﹣或1+
6.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有 个.
7.如图,已知点A,B的坐标分别为(2,0)和(0,3),在坐标轴上找一点C,使△ABC是等腰三角形,则符合条件的C点共有 个.
8.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有 个.
9.在平面直角坐标系中,已知A(5,0),B(0,12),且AB=13,在x轴上取一点P,使得△PAB是以AB为腰的等腰三角形,请写出所有符合条件的点P的坐标 .
10.如图,在平面直角坐标系xOy中,点A在第一象限内,∠AOB=50°,AB⊥x轴于B,点C在y轴正半轴上运动,当△OAC为等腰三角形时,顶角的度数是 .
11.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣7x+12=0的两根.
(1)求直线AB的函数表达式;
(2)若在y轴上取一点P,使△ABP是等腰三角形,则请直接写出满足条件的所有点P的坐标.
12.如图1,在平面直角坐标系中,点A、点B的坐标分别为(4,0)、(0,3).
(1)求AB的长度.
(2)如图2,若以AB为边在第一象限内作正方形ABCD,求点C的坐标.
(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
13.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.
(1)求抛物线的解析式;
(2)求出C、D两点的坐标
(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.
14.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.
15.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.
(1)求点B的坐标和k的值;
(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?
(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
16.抛物线y=ax2+bx+c的图象与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
模型45 折叠变换模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型45 折叠变换模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型45折叠变换模型原卷版docx、模型45折叠变换模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
模型35 垂美四边形模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型35 垂美四边形模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型35垂美四边形模型原卷版docx、模型35垂美四边形模型解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
模型33 两垂一圆构造直角三角形(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型33 两垂一圆构造直角三角形(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型33两垂一圆构造直角三角形原卷版docx、模型33两垂一圆构造直角三角形解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。