初中数学苏科版七年级上册2.7 有理数的乘方学案
展开有理数的乘方
【学习目标】
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数,指数和幂的概念,会求有理数的正整数指数幂。
【学习重难点】
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数,指数和幂的概念,会求有理数的正整数指数幂。
【学习过程】
一、 问题情境:
手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续拉扣六七次后便成了许多细细的面条。
①提问:假如一共拉扣了六次,你能算出共有多少根面条吗?
②引导:一根面条拉扣一次成两根,拉扣2次就成22根,每拉扣一次,面条数就增加1倍,拉扣六次,共有面条 根。
二、问题探讨:
(1)22读作什么?它表示什么?23呢?2×2×2×2可以写成什么形式?222222呢?
(2)如果将上题中2换成任意数a,则a a a ……a可表示成什么形式?读作什么?
(3) 叫做乘方,乘方运算的结果叫 。
(4)所以2,7也可以看作是乘方运算的结果,2还可以读作:“2的6次幂”;7还可以读作:“7的3次幂”其中2和7 叫做 ,6和3叫做 。
应当注意,乘方是一种运算,幂是乘方运算的结果
注意:负数和分数作为底数时要加括号。
(5)填一填:
①(-2)6读作 ,表示 ,其中指数为 ,底数为 ;
② -26读作 ,表示 ,其中指数为 ,底数为 ;
③ 34= ; 43= ;
④(-1)101= ;(-1)100= ;
三、例题讲解:
例1.计算:
(1)2; (2)(-3); (3)();
(4)(-); (5)(—5)3 (6)0.14 ;
(7)—53 ; (8)—32 ; (9)(1)3 ;
(10)—(—2)4 (11) ; (12)
练一练:
1.25读作 _______________,结果是________________
2.—25读作 _______________ ,结果是________________
3.(—2)5读作 _______________ ,结果是________________
4.—(—2)5读作 _______________ ,结果是________________
5.= ,—= ,= ,—= 。
例2.想一想:①(-1 ),(-1),(-),(-)是正数还是负数?
想一想:负数的幂的符号如何确定?
【达标检测】
1.下列各组数中,数值相等的是( )
A.—32与—23 B.—23与(—2)3
C.—32与(—3)2 D.(—3×2)2与—3×22
2.将×××写成乘方的形式是______;将-2×2×2×2写成乘方的形式是_____。
3.(-)3的底数是________,指数是________。
4.-2的平方为________,2的平方为________,平方得4的数是________。
5.3的立方为________,立方得-27的数为________。
6.下列计算错误的是( )
A. B. C. D.
7.如果一个有理数的偶次幂为正数,那么这个有理数( )
A.一定是正数 B.是正数或负数 C.一定是负数 D.可以是任何数
8.下列各数互为相反数的是( )
A.32与-23 B.32与(-3)2 C.32与-32 D.-32与-(-3)2
9.计算:
(1)(-1) (2)-3 (3)-(-3) (4)(—)
(5)(—1)2009 (6) (7) (8)—1—3×(—1)
(9) —2+(—3) (10)-3×(-2)
(11) (12)(-2)-(-2)
数学七年级上册2.7 有理数的乘方优秀导学案: 这是一份数学七年级上册2.7 有理数的乘方优秀导学案,文件包含27有理数的乘方1导学案无答案doc、27有理数的乘方2导学案无答案doc等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。
初中苏科版2.7 有理数的乘方学案设计: 这是一份初中苏科版2.7 有理数的乘方学案设计,共4页。
苏科版七年级上册2.7 有理数的乘方学案: 这是一份苏科版七年级上册2.7 有理数的乘方学案,共7页。学案主要包含了教学目标,知识要点,课后作业等内容,欢迎下载使用。