|试卷下载
搜索
    上传资料 赚现金
    2022_2023学年新教材高中数学课时作业十八表示函数的方法湘教版必修第一册
    立即下载
    加入资料篮
    2022_2023学年新教材高中数学课时作业十八表示函数的方法湘教版必修第一册01
    2022_2023学年新教材高中数学课时作业十八表示函数的方法湘教版必修第一册02
    2022_2023学年新教材高中数学课时作业十八表示函数的方法湘教版必修第一册03
    还剩5页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修 第一册3.1 函数当堂检测题

    展开
    这是一份数学必修 第一册3.1 函数当堂检测题,共8页。

    1.观察下表:
    则f eq \b\lc\(\rc\)(\a\vs4\al\c1(f(-1)-g(3))) =( )
    A.-1 B.-3
    C.3 D.5
    2.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是( )
    A.甲比乙先出发 B.乙比甲跑的路程多
    C.甲、乙两人的速度相同 D.甲比乙先到达终点
    3.已知f(x)是一次函数,且f(x-1)=3x-5,则f(x)的解析式为( )
    A.f(x)=3x+2 B.f(x)=3x-2
    C.f(x)=2x+3 D.f(x)=2x-3
    4.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f eq \b\lc\[\rc\](\a\vs4\al\c1(g(2))) 的值为( )
    eq \a\vs4\al()
    A.3 B.2
    C.1 D.0
    5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,则图象可能是( )
    6.若函数f(2x+1)=x2-2x,则f(3)等于( )
    A.-1 B.0 C.1 D.3
    7.若f(x)- eq \f(1,2) f(-x)=2x(x∈R),则f(2)=________.
    8.某企业生产某种产品时的能耗y与所生产的产品件数x之间的关系式为y=ax+ eq \f(b,x),其中,当x=2时,y=100;当x=7时,y=35,且此产品生产件数不超过20.则y关于x的解析式为____________________.
    9.如图是某观水站8月上旬记录的水位图,看图回答.
    (1)在这10天中,哪一天的水位最高?最高水位是多少?哪一天的水位最低?最低水位是多少?
    (2)这10天中的水位差(最高水位-最低水位)是多少?从最低水位到最高水位经过几天?最高水位保持了几天?
    (3)这10天中,有哪几天的水位在上升?有哪几天的水位在下降?有没有水位保持不变的?
    10.已知二次函数f(x)=ax2+bx+3(a≠0)的图象过点A(-3,0),对称轴为直线x=-1.
    (1)求函数y=f(x)的解析式;
    (2)若函数y=g(x)满足g(2x+1)=f(x),求函数y=g(x)的解析式.
    [提能力]
    11.德国数学家狄利克雷在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值,都有一个确定的y与之对应,不管这个对应的法则是公式、图象、表格还是其他形式.已知函数f(x)由下表给出,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(10f\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))))的值为( )
    A.0 B.1
    C.2 D.3
    12.设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈ eq \b\lc\(\rc\](\a\vs4\al\c1(0,1))时f(x)=x(x-1).当x∈ eq \b\lc\(\rc\](\a\vs4\al\c1(2,3))时,函数f(x)的值域是( )
    A. eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(1,4),0)) B. eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(1,2),0))
    C. eq \b\lc\[\rc\](\a\vs4\al\c1(-1,0)) D. eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,0))
    13.如图,函数f(x)的图象是曲线OAB,其中,点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,f(3))))=________.
    14.已知函数F(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且F eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))=16,F(1)=8,则F(x)的解析式为________________.
    15.已知一次函数f(x)满足2f(2)-3f(1)=5,2f(0)-f(-1)=1.
    (1)求这个函数的解析式;
    (2)若函数g(x)=f(x)-x2,求函数g(x)的零点.
    [培优生]
    16.已知函数f(x)= eq \f(x,ax+b)(a,b为常数,且a≠0)满足f(2)=1,且f(x)=x有唯一解,求函数y=f(x)的解析式和f eq \b\lc\[\rc\](\a\vs4\al\c1(f(-3)))的值.
    课时作业(十八) 表示函数的方法
    1.解析:由题中表格得f(-1)=-1,g(3)=-4,
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(f(-1)-g(3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-1-(-4)))=f(3)=5.故选D.
    答案:D
    2.解析:从图中的直线看出:v甲>v乙,s甲=s乙,
    甲、乙同时出发,跑了相同的路程,甲比乙先到达.故选D.
    答案:D
    3.解析:设f(x)=kx+b,(k≠0)
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(x-1))=k(x-1)+b=3x-5,
    即kx-k+b=3x-5,
    所以 eq \b\lc\{(\a\vs4\al\c1(k=3,b-k=-5)),解得k=3,b=-2,
    ∴f(x)=3x-2.故选B.
    答案:B
    4.解析:由函数g(x)的图象知,g(2)=1,则f eq \b\lc\[\rc\](\a\vs4\al\c1(g(2)))=
    f(1)=2.故选B.
    答案:B
    5.解析:汽车启动,瞬时速度在变大,所以曲线上升得越来越快;加速行驶过程中,曲线上升得更快;匀速行驶过程中,速度不变,路程均匀增加;减速行驶过程中,瞬时速度在变小,所以曲线上升得越来越慢,故选A.
    答案:A
    6.解析:(法一):令2x+1=t,则x= eq \f(t-1,2),故f(t)= eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(t-1,2))) eq \s\up12(2)-2× eq \f(t-1,2)= eq \f(1,4)(t2-6t+5),即f(x)= eq \f(1,4)(x2-6x+5),
    故f(3)= eq \f(1,4)(32-6×3+5)=-1.故选A.
    (法二):令2x+1=3,得x=1.从而f(3)=f(2×1+1)=12-2×1=-1.故选A.
    答案:A
    7.解析:∵f(x)- eq \f(1,2)f(-x)=2x,
    ∴ eq \b\lc\{(\a\vs4\al\c1(f(2)-\f(1,2)f(-2)=4,,f(-2)-\f(1,2)f(2)=-4,))
    得 eq \b\lc\{(\a\vs4\al\c1(2f(2)-f(-2)=8,,f(-2)-\f(1,2)f(2)=-4,))
    相加得 eq \f(3,2)f(2)=4,f(2)= eq \f(8,3).
    答案: eq \f(8,3)
    8.解析:由题意知 eq \b\lc\{(\a\vs4\al\c1(2a+\f(b,2)=100,,7a+\f(b,7)=35,))即 eq \b\lc\{(\a\vs4\al\c1(4a+b=200,,49a+b=245,))解得 eq \b\lc\{(\a\vs4\al\c1(a=1,,b=196,))所以所求函数的解析式为y=x+ eq \f(196,x)(0答案:y=x+ eq \f(196,x)(09.解析:(1)8月7日水位最高,为15.4m;8月3日水位最低,为8.8m.
    (2)水位差=15.4-8.8=6.6(m),从最低水位到最高水位经过了4天,只有8月7日这一天水位最高,所以最高水位只保持了一天.
    (3)8月1日、4日、5日、6日、7日水位上升,8月2日、8月9日水位均下降,8月3日水位保持不变.
    10.解析:(1)由题意得 eq \b\lc\{(\a\vs4\al\c1(f(-3)=9a-3b+3=0,,-\f(b,2a)=-1,))解得 eq \b\lc\{(\a\vs4\al\c1(a=-1,,b=-2,))∴f(x)=-x2-2x+3.
    (2)g(2x+1)=f(x)=-x2-2x+3,设2x+1=t,则x= eq \f(t-1,2),
    ∴g(t)=- eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(t-1,2))) eq \s\up12(2)-2· eq \f(t-1,2)+3=- eq \f(t2,4)- eq \f(t,2)+ eq \f(15,4),
    ∴g(x)=- eq \f(x2,4)- eq \f(x,2)+ eq \f(15,4).
    11.解析:∵ eq \f(1,2)∈ eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,1)),
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=1,则10f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=10,
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(10\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))))=f(10).
    又∵10∈ eq \b\lc\[\rc\)(\a\vs4\al\c1(2,+∞)),∴f(10)=3.故选D.
    答案:D
    12.解析:∵f(x+1)=2f(x),∴f(x)=2f(x-1),
    当x∈ eq \b\lc\(\rc\](\a\vs4\al\c1(1,2))时,则x-1∈ eq \b\lc\(\rc\](\a\vs4\al\c1(0,1)),f(x)=2f(x-1)=2(x-1)(x-2),
    当x∈ eq \b\lc\(\rc\](\a\vs4\al\c1(2,3))时,x-1∈ eq \b\lc\(\rc\](\a\vs4\al\c1(1,2)),f(x)=2f(x-1)
    =4(x-2)(x-3).
    f(x)=4(x-2)(x-3)=4(x2-5x+6)
    =4 eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(5,2))) eq \s\up12(2)-1,
    显然f(x)min=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=-1,f(3)=0,
    当x∈ eq \b\lc\(\rc\)(\a\vs4\al\c1(2,3))时,f(x)<0,
    ∴所求值域是 eq \b\lc\[\rc\](\a\vs4\al\c1(-1,0)).故选C.
    答案:C
    13.解析:因为f(3)=1,所以f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,f(3))))=f(1)=2.
    答案:2
    14.解析:设f(x)=kx(k≠0),g(x)= eq \f(m,x)(m≠0,且x≠0),则F(x)=kx+ eq \f(m,x).
    由F eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))=16,F(1)=8,得 eq \b\lc\{(\a\vs4\al\c1(\f(1,3)k+3m=16,,k+m=8,))解得 eq \b\lc\{(\a\vs4\al\c1(k=3,,m=5,))所以F(x)=3x+ eq \f(5,x)(x≠0).
    答案:F(x)=3x+ eq \f(5,x)(x≠0)
    15.解析:(1)设f(x)=kx+b,(k≠0),由条件得:
    eq \b\lc\{(\a\vs4\al\c1(2(2k+b)-3(k+b)=5,2b-(-k+b)=1)),
    解得 eq \b\lc\{(\a\vs4\al\c1(k=3,b=-2)),故f(x)=3x-2;
    (2)由(1)知g(x)=3x-2-x2,即g(x)=-x2+3x-2,
    令-x2+3x-2=0,解得x=2或x=1,
    所以函数g(x)的零点是2和1.
    16.解析:因为f(2)=1,所以 eq \f(2,2a+b)=1,即2a+b=2,①
    又因为f(x)=x有唯一解,即 eq \f(x,ax+b)=x有唯一解,所以ax2+(b-1)x=0有两个相等的实数根,所以Δ=(b-1)2=0,即b=1.代入①得a= eq \f(1,2).所以f(x)= eq \f(x,\f(1,2)x+1)= eq \f(2x,x+2).
    所以f eq \b\lc\[\rc\](\a\vs4\al\c1(f(-3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(-6,-1)))=f(6)= eq \f(2×6,6+2)= eq \f(3,2).x
    -3
    -2
    -1
    1
    2
    3
    f(x)
    5
    1
    -1
    -3
    3
    5
    g(x)
    1
    4
    2
    3
    -2
    -4
    x
    1
    2
    3
    f(x)
    2
    3
    0
    x
    x≤1
    1x≥2
    f(x)
    1
    2
    3
    相关试卷

    湘教版(2019)必修 第一册第6章 统计学初步6.1 获取数据的途径及统计概念同步练习题: 这是一份湘教版(2019)必修 第一册第6章 统计学初步6.1 获取数据的途径及统计概念同步练习题,共6页。

    高中数学湘教版(2019)必修 第一册4.1 实数指数幂和幂函数测试题: 这是一份高中数学湘教版(2019)必修 第一册4.1 实数指数幂和幂函数测试题,共8页。

    高中数学湘教版(2019)必修 第一册3.1 函数同步练习题: 这是一份高中数学湘教版(2019)必修 第一册3.1 函数同步练习题,共6页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map