- 专题1.4直角三角形全等的判定-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典(苏科版) 试卷 0 次下载
- 专题1.5全等三角形的性质与判定(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题1.7全等三角形的性质与判定大题专练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题1.8一线三等角构造全等模型专练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题1.9倍长中线构造全等模型大题专练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
初中苏科版1.2 全等三角形课后作业题
展开【名师点睛】
全等三角形在实际问题中的应用
一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.
【典例剖析】
【例1】(2021秋•灌云县月考)为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:
甲:如图①,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.
乙:如图②,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.
(1)甲、乙两同学的方案哪个可行?
(2)请说明方案可行的理由.
【变式1】.(2020秋•东海县期末)小明与爸爸妈妈在公园里荡秋千,如图,小明坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住他后用力一推,爸爸在C处接住他,若妈妈与爸爸到OA的水平距离BD、CE分别为1.6m和2m,∠BOC=90°.
(1)△OBD与△COE全等吗?请说明理由;
(2)爸爸是在距离地面多高的地方接住小明的?
【变式2】(2021秋•广陵区校级期末)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语.具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等.AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度.
【满分训练】
一.选择题(共10小题)
1.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )
A.AB,BC,CAB.AB,BC,∠BC.AB,AC,∠BD.∠A,∠B,BC
2.(2021秋•东台市期末)如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )
A.ASAB.HLC.SASD.SSS
3.(2021秋•邳州市期中)如图,一块三角形的玻璃碎成3块(图中所标1、2、3),小华带第3块碎片去玻璃店,购买形状相同、大小相等的新玻璃,这是利用三角形全等中的( )
A.SSSB.ASAC.AASD.SAS
4.(2021秋•灌云县月考)在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是( )
A.5厘米B.6厘米C.2厘米D.厘米
5.(2021秋•如皋市月考)如图,要测量池塘两岸相对的两点A,B之间的距离,可以在池塘外取AB的垂线BF上两点C,D,使BC=CD,再画出BF的垂线DE,使点E与A,C在同一条直线上,这时,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )
A.HLB.SASC.ASAD.SSS
6.(2021秋•鼓楼区校级月考)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSSB.SASC.ASAD.AAS
7.(2021秋•玄武区校级期末)如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( )
A.SSSB.SASC.ASAD.AAS
8.(2021秋•东台市期中)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是( )
A.SSSB.SASC.ASAD.AAS
9.(2021秋•北海期末)把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为( )
A.4cmB.6cmC.8cmD.求不出来
10.(2020春•肃州区期末)在测量一个小口圆柱形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,AD=BC,测得AB=a,EF=b,圆柱形容器的壁厚是( )
A.aB.bC.b﹣aD.(b﹣a)
二.填空题(共6小题)
11.(2021秋•沛县期末)如图,小明用“X”型转动钳测量圆柱形小口容器壁的厚度.已知OA=OD,OB=OC,AB=6cm,EF=8cm,则该容器壁的厚度为 cm.
12.(2020秋•梁溪区校级期中)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 块.
13.(2021秋•邗江区校级月考)如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里得到△MBC≌△ABC的依据是 .
14.(2021秋•沭阳县校级月考)如图,AC=DB,AO=DO,CD=20m,则A,B两点间的距离为 m.
15.(2020秋•江阴市校级月考)如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是 cm.
16.(2019春•海淀区校级期末)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为 m.理由是 .
三.解答题(共4小题)
17.(2018秋•灌云县月考)某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
18.(2020•如皋市一模)如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.为什么?
19.(2019秋•邗江区校级月考)如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)
(1)线段 的长度就是A、B两点间的距离
(2)请说明(1)成立的理由.
20.(2021春•宣汉县期末)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的长度.
专题1.7全等三角形的性质与判定大题专练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】: 这是一份专题1.7全等三角形的性质与判定大题专练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】,文件包含专题17全等三角形的性质与判定大题专练重难点培优-讲练课堂2022-2023学年八年级数学上册题典解析版苏科版docx、专题17全等三角形的性质与判定大题专练重难点培优-讲练课堂2022-2023学年八年级数学上册题典原卷版苏科版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
专题1.5全等三角形的性质与判定(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】: 这是一份专题1.5全等三角形的性质与判定(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】,文件包含专题15全等三角形的性质与判定重难点培优-讲练课堂2022-2023学年八年级数学上册题典解析版苏科版docx、专题15全等三角形的性质与判定重难点培优-讲练课堂2022-2023学年八年级数学上册题典原卷版苏科版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题1.6全等三角形的应用(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】: 这是一份专题1.6全等三角形的应用(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册 题典【苏科版】,文件包含专题16全等三角形的应用重难点培优-讲练课堂2022-2023学年八年级数学上册题典解析版苏科版docx、专题16全等三角形的应用重难点培优-讲练课堂2022-2023学年八年级数学上册题典原卷版苏科版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。