![新人教A版高中数学必修第二册第九章统计2用样本估计总体练习含解析第1页](http://m.enxinlong.com/img-preview/3/3/13202053/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新人教A版高中数学必修第二册第九章统计2用样本估计总体练习含解析第2页](http://m.enxinlong.com/img-preview/3/3/13202053/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:全套新人教A版高中数学必修第二册练习含解析
2021学年9.2 用样本估计总体巩固练习
展开
这是一份2021学年9.2 用样本估计总体巩固练习,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
用样本估计总体(20分钟 40分)一、选择题(每小题5分,共20分)1.某校举行“社会主义核心价值观”演讲比赛,学校对30名参赛选手的成绩进行了分组统计,结果如下表:分数4≤x<55≤x<66≤x<77≤x<88≤x<99≤x<10频数268554由上可知,参赛选手分数的中位数所在的分数段为( )A.5≤x<6 B.6≤x<7C.7≤x<8 D.8≤x<9【解析】选B.共有30个数,中位数是第15,16个数的平均数,而第15,16个数所在分数段均为6≤x<7,所以参赛选手分数的中位数所在的分数段为6≤x<7.2.已知一组数据:125,121,123,125,127,129,125,128,130,129,126,124,125,127,126.则这组数据的第25百分位数和第80百分位数分别是( )A.125 128 B.124 128C.125 129 D.125 128.5【解析】选D.把这15个数据按从小到大排序,可得121,123,124,125,125,125,125,126,126,127,127,128,129,129,130,由25%×15=3.75,80%×15=12,可知数据的第25百分位数为第4项数据为125,第80百分位数为第12项与第13项数据的平均数,即×(128+129)=128.5.3.箱子中共有40个网球(质量不完全相同),其平均质量为M,如果把M当成一个网球的质量,与原来的40个网球一起,算出这41个网球的平均质量为N,那么为( )A. B.1 C. D.2【解析】选B.设40个网球的质量分别为xi(i=1,2,…,40),则M=,N==M,故=1.4.(多选题)某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:对比数据,关于这20名肥胖者,下面结论正确的是( )A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8 kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少【解析】选AD.体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A正确;他们健身后,体重在区间[100,110]内的频率没有变,但人员组成可能改变,故B错误;他们健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5 kg,故C错误;因为图题(2)中没有体重在区间[110,120]内的人员,所以原来体重在区间[110,120]内的肥胖者体重都有减少,故D正确.二、填空题(每小题5分,共10分)5.若40个数据的平方和是56,平均数是,则这组数据的方差是______.【解析】设这40个数据为xi(i=1,2,…,40),平均数为.则s2=×[(x1-)2+(x2-)2+…+(x40-)2]=[x+x+…+x+402-2(x1+x2+…+x40)]==×=0.9.答案:0.96.一批乒乓球,随机抽取100个进行检查,球的直径频率分布直方图如图.试估计这个样本的众数为______,中位数为________,平均数为________.【解析】众数==40;中位数为39.99+=39.998;四个矩形的面积分别是0.02×5=0.1,0.02×10=0.2,0.02×25=0.5,0.02×10=0.2.平均数为39.96×0.1+39.98×0.2+40×0.5+40.02×0.2=39.996.答案:40 39.998 39.996三、解答题7.(10分)某中学开展演讲比赛活动,高一(1)、高一(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据上图填写下表: 平均分(分)中位数(分)众数(分)高一(1)班85 85高一(2)班8580 (2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些?说明理由.【解析】(1)85 100(2)因为两班的平均数相同,高一(1)班的中位数高,所以高一(1)班的复赛成绩好些;(3)因为高一(1)、高一(2)班前两名选手的平均分分别为92.5分,100分,所以在每班参加复赛的选手中分别选出2人参加决赛,高一(2)班的实力更强一些.
相关试卷
这是一份数学必修 第二册9.2 用样本估计总体随堂练习题,共5页。
这是一份2020-2021学年9.2 用样本估计总体当堂达标检测题,共6页。
这是一份2021学年9.2 用样本估计总体同步达标检测题,共6页。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)