


初中人教版第十二章 全等三角形综合与测试课时练习
展开《全等三角形》
LISTNUM OutlineDefault \l 3 如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.
求证:(1)∠ABC=∠EDC;
(2)△ABC≌△EDC.
LISTNUM OutlineDefault \l 3 如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.
LISTNUM OutlineDefault \l 3 如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求证:AF平分∠BAC.
LISTNUM OutlineDefault \l 3 如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求证:(1)EC=BF;
(2)EC⊥BF.
LISTNUM OutlineDefault \l 3 如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.
LISTNUM OutlineDefault \l 3 如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.
LISTNUM OutlineDefault \l 3 如图1所示,在△ABC中, ∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.
(1)求证:MN=AM+BN;
(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.
LISTNUM OutlineDefault \l 3 如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求证:△BCE≌△DCF;
(2)求证:AB+AD=2AE.
LISTNUM OutlineDefault \l 3 (1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.
① 求证:OE=BE;
② 若△ABC 的周长是25,BC=9,试求出△AEF的周长;
(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC 与∠PAC的数量关系式.
LISTNUM OutlineDefault \l 3 如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.
(1)求OA、OB的长;
(2)连接PB,设△POB的面积为S,用t的式子表示S;
(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
参考答案
LISTNUM OutlineDefault \l 3 \s 1 证明:(1)在四边形ABCD中,
∵∠BAD=∠BCD=90°,
∴∠B+∠ADC=180°.
又∵∠CDE+∠ADC=180°.
∴∠ABC=∠EDC.
(2)连接AC.
在△ABC和△EDC中,
eq \b\lc\{(\a\vs4\al\c1(AB=ED,,∠ABC=∠EDC,,CB=CD,))
∴△ABC≌△EDC(SAS).
LISTNUM OutlineDefault \l 3 证明:在△ABD和△ACE中,
eq \b\lc\{(\a\vs4\al\c1(AB=AC,,AD=AE,,BD=CE,))
∴△ABD≌△ACE(SSS).
∴∠BAD=∠1,∠ABD=∠2.
∵∠3=∠BAD+∠ABD,
∴∠3=∠1+∠2.
LISTNUM OutlineDefault \l 3 证明:∵AB=AC(已知),
∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB(高的定义).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.
∴∠ECB=∠DBC(等量代换).
∴FB=FC(等角对等边),
在△ABF和△ACF中,,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),
∴AF平分∠BAC.
LISTNUM OutlineDefault \l 3 证明:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,
即∠EAC=∠BAF,
在△ABF和△AEC中,
∵,
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如图,根据(1),△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(对顶角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,
所以EC⊥BF.
LISTNUM OutlineDefault \l 3 证明:CD=BE,CD⊥BE,理由如下:
因为∠BAD=∠CAE=90°,
所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.
因为,
所以△BAE≌△DAC(SAS).
所以BE=DC,∠BEA=∠DCA.
如图,设AE与CD相交于点F,
因为∠ACF+∠AFC=90°,∠AFC=∠DFE,
所以∠BEA+∠DFE=90°.
即CD⊥BE.
LISTNUM OutlineDefault \l 3 证明:因为∠CEB=∠CAB=90°
所以:ABCE四点共元
又因为:∠ABE=∠CBE
所以:AE=CE
所以:∠ECA=∠EAC
取线段BD的中点G,连接AG,则:AG=BG=DG
所以:∠GAB=∠ABG
而:∠ECA=∠GBA
所以:∠ECA=∠EAC=∠GBA=∠GAB
而:AC=AB
所以:△AEC≌△AGB
所以:EC=BG=DG
所以:BD=2CE
LISTNUM OutlineDefault \l 3 解:(1)证明:∵∠ACB=90°,
∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°.
∴∠BCN+∠CBN=90°.
∴∠ACM=∠CBN.
在△ACM和△CBN中,
eq \b\lc\{(\a\vs4\al\c1(∠ACM=∠CBN,,∠AMC=∠CNB,,AC=CB,))
∴△ACM≌△CBN(AAS).
∴MC=NB,MA=NC.
∵MN=MC+CN,
∴MN=AM+BN.
(2)(1)中的结论不成立,结论为MN=AM-BN.
理由:同(1)中证明可得△ACM≌△CBN,
∴CM=BN,AM=CN.
∵MN=CN-CM,
∴MN=AM-BN.
LISTNUM OutlineDefault \l 3 (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,
∴CE=CF,∠F=∠CEB=90°,
在Rt△BCE和Rt△DCF中,
∴△BCE≌△DCF;
(2)解:∵CE⊥AB于E,CF⊥AD于F,
∴∠F=∠CEA=90°,
在Rt△FAC和Rt△EAC中,,
∴Rt△FAC≌Rt△EAC,
∴AF=AE,
∵△BCE≌△DCF,
∴BE=DF,
∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
LISTNUM OutlineDefault \l 3 (1)∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EDB=∠OBC,∴∠EOB=∠EBO,∴OE=BE
(2)△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16
(3)延长BA,证明P点在∠BAC外角的角平分线上(11分),从而得到2∠PAC+∠BAC=180°
LISTNUM OutlineDefault \l 3 解:(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0
∴|m﹣n﹣3|==0,
∴n=3,m=6,
∴点A(0,6),点B(3,0);
(2)连AP=t,OP=|6﹣t|,
∴S=0.5OPOB=1.5|6﹣t|;(t≥0)
(3)作出图形,
∵∠OAB+∠OBA=90°,∠OAB+∠OPE=90°,
∴∠OBA=∠OPE,
∴只要OP=OB,即可求证△EOP≌△AOB,
∴AP=AO+OP=9,
∴t=9.
人教版九年级上册第二十四章 圆综合与测试练习: 这是一份人教版九年级上册第二十四章 圆综合与测试练习,共11页。试卷主要包含了5°,求证等内容,欢迎下载使用。
数学九年级上册第二十五章 概率初步综合与测试巩固练习: 这是一份数学九年级上册第二十五章 概率初步综合与测试巩固练习,共10页。
数学九年级上册第二十三章 旋转综合与测试测试题: 这是一份数学九年级上册第二十三章 旋转综合与测试测试题,共9页。