搜索
    上传资料 赚现金
    (新)人教B版(2019)必修第三册学案:第7章 7.3 7.3.2 正弦型函数的性质与图像(含解析)
    立即下载
    加入资料篮
    (新)人教B版(2019)必修第三册学案:第7章 7.3 7.3.2 正弦型函数的性质与图像(含解析)01
    (新)人教B版(2019)必修第三册学案:第7章 7.3 7.3.2 正弦型函数的性质与图像(含解析)02
    (新)人教B版(2019)必修第三册学案:第7章 7.3 7.3.2 正弦型函数的性质与图像(含解析)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学人教B版 (2019)第七章 三角函数7.3 三角函数的性质与图像7.3.2 正弦型函数的性质与图像优质学案

    展开
    这是一份数学人教B版 (2019)第七章 三角函数7.3 三角函数的性质与图像7.3.2 正弦型函数的性质与图像优质学案,共12页。







    1.正弦型函数


    (1)形如y=Asin(ωx+φ)(其中A,ω,φ都是常数,且A≠0,w≠0)的函数,通常叫做正弦型函数.


    (2)函数y=Asin(ωx+φ)(其中A≠0,ω≠0,x∈R)的周期T=eq \f(2π,|ω|),频率f=eq \f(|ω|,2π),初相为φ,值域为[-|A|,|A|],|A|也称为振幅,|A|的大小反映了y=Asin(ωx+φ)的波动幅度的大小.


    2.A,ω,φ对函数y=Asin(ωx+φ)图像的影响


    (1)φ对函数y=sin(x+φ)图像的影响:





    (2)ω对函数y=sin(ωx+φ)图像的影响:





    (3)A对函数y=Asin(ωx+φ)图像的影响:





    (4)用“变换法”作图:


    y=sin x的图像eq \(―――――――――――――――→,\s\up16(向左φ>0或向右φ<0),\s\d12(平移|φ|个单位长度))y=sin(x+φ)的图像eq \(――――――――――――――→,\s\up10(横坐标变为原来的eq \f(1,ω)),\s\d12(纵坐标不变))y=sin(ωx+φ)的图像eq \(――――――――――――――→,\s\up16(纵坐标变为原来的A倍),\s\d12(横坐标不变))y=Asin(ωx+φ)的图像.


    思考:由y=sin x的图像,通过怎样的变换可以得到y=Asin(ωx+φ)的图像?


    [提示] 变化途径有两条:


    (1)y=sin xeq \(―――→,\s\up8(相位变换))y=sin(x+φ) eq \(―――→,\s\up8(周期变换))y=sin(ωx+φ) eq \(―――→,\s\up8(振幅变换))y=Asin(ωx+φ).


    (2)y=sin xeq \(―――→,\s\up8(周期变换))y=sin ωxeq \(―――→,\s\up8(相位变换))y=sin(ωx+φ) eq \(―――→,\s\up8(振幅变换))y=Asin(ωx+φ).





    1.函数y=4sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))+1的最小正周期为( )


    A.eq \f(π,2) B.π


    C.2π D.4π


    B [T=eq \f(2π,2)=π.]


    2.要得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的图像,只要将y=sin x的图像( )


    A.向右平移eq \f(π,4)个单位B.向左平移eq \f(π,4)个单位


    C.向上平移eq \f(π,4)个单位D.向下平移eq \f(π,4)个单位


    B [将y=sin x的图像向左平移eq \f(π,4)个单位可得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的图像.]


    3.已知函数y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)x+\f(π,7))),则该函数的最小正周期、振幅、初相分别是______,______,______.


    10π 3 eq \f(π,7) [由函数y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)x+\f(π,7)))的解析式知,振幅为3,最小正周期为T=eq \f(2π,|ω|)=10π,初相为eq \f(π,7).]





    【例1】 用“五点法”作函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))+3的图像,并写出函数的定义域、值域、周期、频率、初相、最值、单调区间、对称轴方程.


    [思路探究] 先确定一个周期内的五个关键点,画出一个周期的图像,左、右扩展可得图像,然后根据图像求性质.


    [解] ①列表:


    ②描点连线作出一周期的函数图像.


    ③把此图像左、右扩展即得y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))+3的图像.





    由图像可知函数的定义域为R,值域为[1,5],


    周期为T=eq \f(2π,ω)=2π,频率为f=eq \f(1,T)=eq \f(1,2π) ,初相为φ=-eq \f(π,3),最大值为5,最小值为1.


    令2kπ-eq \f(π,2)≤x-eq \f(π,3)≤2kπ+eq \f(π,2)(k∈Z)得原函数的增区间为eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,6),2kπ+\f(5π,6)))(k∈Z).


    令2kπ+eq \f(π,2)≤x-eq \f(π,3)≤2kπ+eq \f(3π,2),(k∈Z)得原函数的减区间为eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ+\f(5π,6),2kπ+\f(11π,6)))(k∈Z).


    令x-eq \f(π,3)=kπ+eq \f(π,2)(k∈Z)得原函数的对称轴方程为x=kπ+eq \f(5,6) π(k∈Z).





    1.用“五点法”作y=Asin(ωx+φ)的图像,应先令ωx+φ分别为0,eq \f(π,2) ,π,eq \f(3π,2),2π,然后解出自变量x的对应值,作出一周期内的图像.


    2.求y=Asin(ωx+φ)的单调区间时,首先把x的系数化为正值,然后利用整体代换,把ωx+φ代入相应不等式中,求出相应的变量x的范围.








    1.作出函数y=eq \r(2) sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))在x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,8),\f(3π,4)))上的图像.


    [解] 令X=2x-eq \f(π,4) ,列表如下:


    描点连线得图像如图所示.





    【例2】 函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))-2的图像是由函数y=sin x的图像通过怎样的变换得到的?


    [思路探究] 由周期知“ 横向缩短” ,由振幅知“ 纵向伸长” ,并且需要向左、向下移动.


    [解] 法一:y=sin x











    三角函数图像平移变换问题的分类及解题策略


    1确定函数y=sin x的图像经过平移变换后图像对应的解析式,关键是明确左右平移的方向,按“左加右减”的原则进行;注意平移只对“x”而言.


    2已知两个函数解析式判断其图像间的平移关系时,首先要将解析式化为同名三角函数形式,然后再确定平移方向和单位.








    2.为了得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))),x∈R的图像,只需把函数y=sin x,x∈R的图像上所有的点:


    ①向左平移eq \f(π,6) 个单位,再把所得各点的横坐标缩短到原来的eq \f(1,3) (纵坐标不变);


    ②向右平移eq \f(π,6) 个单位,再把所得各点的横坐标缩短到原来的eq \f(1,3) (纵坐标不变);


    ③向左平移eq \f(π,6) 个单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变);


    ④向右平移eq \f(π,6) 个单位,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).


    其中正确的是________.


    ③ [y=sin xeq \(――――→,\s\up16(向左平移),\s\d25(\f(π,6)个单位))y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))


    eq \(――――――――→,\s\up16(横坐标伸长到),\s\d12(原来的3倍纵坐标不变))y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))).]


    【例3】 如图所示的是函数y=Asin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(|φ|<\f(π,2))) 的图像,确定其一个函数解析式.





    [思路探究] 解答本题可由最高点、最低点确定A,再由周期确定ω,然后由图像所过的点确定φ.


    [解] 由图像,知A=3,T=π,


    又图像过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6),0)),


    ∴所求图像由y=3sin 2x的图像向左平移eq \f(π,6) 个单位得到,


    ∴y=3sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6))),即y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3))).





    确定函数y=Asinωx+φ的解析式的关键是φ的确定,常用方法有:


    1代入法:把图像上的一个已知点代入此时A,ω已知或代入图像与x轴的交点求解此时要注意交点在上升区间上还是在下降区间上.


    2五点法:确定φ值时,往往以寻找“五点法”中的第一个零点 eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(φ,ω),0))作为突破口.“五点”的ωx+φ的值具体如下:


    “第一点”即图像上升时与x轴的交点为ωx+φ=0;


    “第二点”即图像的“峰点”为ωx+φ= eq \f(π,2);


    “第三点”即图像下降时与x轴的交点为ωx+φ=π;


    “第四点”即图像的“谷点”为ωx+φ= eq \f(3π,2);


    “第五点”为ωx+φ=2π.








    3.已知函数y=Asin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(A>0,ω>0,|φ|<\f(π,2)))在一个周期内的部分函数图像如图所示,求此函数的解析式.


    [解] 由图像可知


    A=2,eq \f(T,2)=eq \f(4,3)-eq \f(1,3)=1,∴T=2,


    ∴T=eq \f(2π,ω)=2,∴ω=π,


    ∴y=2sin(πx+φ).


    代入eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),2))得2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+φ))=2,


    ∴sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+φ))=1,∵|φ|<eq \f(π,2) ,


    ∴φ=eq \f(π,6) ,∴y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(πx+\f(π,6))).





    [探究问题]


    1.如何求函数y=Asin(ωx+φ)的对称轴方程?


    [提示] 与正弦曲线一样,函数y=Asin(ωx+φ)的图像的对称轴通过函数图像的最值点且垂直于x轴.


    函数y=Asin(ωx+φ)对称轴方程的求法:令sin(ωx+φ)=±1,得ωx+φ=kπ+eq \f(π,2)(k∈Z),则x=eq \f(2k+1π-2φ,2ω)(k∈Z),所以函数y=Asin(ωx+φ)的图像的对称轴方程为x=eq \f(2k+1π-2φ,2ω)(k∈Z).


    2.如何求函数y=Asin(ωx+φ)的对称中心?


    [提示] 与正弦曲线一样,函数y=Asin(ωx+φ)图像的对称中心即函数图像与x轴的交点.


    函数y=Asin(ωx+φ)对称中心的求法:令sin(ωx+φ)=0,得ωx+φ=kπ(k∈Z),则x=eq \f(kπ-φ,ω)(k∈Z),所以函数y=Asin(ωx+φ)的图像关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ-φ,ω),0))(k∈Z)成中心对称.


    【例4】 已知函数f(x)=sin(2x+φ)(0<φ<π).


    (1)若函数f(x)=sin(2x+φ)为偶函数,求φ的值;


    (2)若函数f(x)=sin(2x+φ)关于x=eq \f(π,8) 对称,求出φ的值及f(x)的所有的对称轴方程及对称中心的坐标.


    [思路探究] 利用正弦函数的性质解题.


    [解](1)∵f(x)为偶函数,∴φ=kπ+eq \f(π,2) ,


    又φ∈(0,π),∴φ=eq \f(π,2).


    (2)∵f(x)=sin(2x+φ)关于x=eq \f(π,8) 对称,


    ∴f(0)=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4))),即sin φ=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+φ))=cs φ,


    ∴tan φ=1,φ=kπ+eq \f(π,4)(k∈Z).


    又φ∈(0,π),∴φ=eq \f(π,4) ,∴f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4))).


    由2x+eq \f(π,4)=kπ+eq \f(π,2)(k∈Z),


    得x=eq \f(kπ,2)+eq \f(π,8)(k∈Z),


    由2x+eq \f(π,4)=kπ,得x=eq \f(kπ,2)-eq \f(π,8)(k∈Z),


    ∴f(x)的对称轴方程为x=eq \f(kπ,2)+eq \f(π,8)(k∈Z),


    对称中心eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ,2)-\f(π,8),0))(k∈Z).





    1.函数y=Asin(ωx+φ)的性质较为综合,主要围绕着函数单调性、最值、奇偶性、图像的对称性等考查.


    2.有关函数y=Asin(ωx+φ)的性质运用问题,要特别注意整体代换思想的运用.








    4.函数f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图像为C,则以下结论中正确的是________.(写出所有正确结论的编号)


    ①图像C关于直线x=eq \f(π,12) 对称;


    ②图像C关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),0))对称;


    ③函数f(x)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,12),\f(5π,12)))内是增函数;


    ④由y=3sin 2x的图像向右平移eq \f(π,3) 个单位长度可以得到图像C.


    ②③ [feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)))=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2×\f(π,12)-\f(π,3)))=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6)))=-eq \f(3,2).


    feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)))=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4π,3)-\f(π,3)))=0,


    故①错,②正确.


    令-eq \f(π,2)+2kπ≤2x-eq \f(π,3)≤eq \f(π,2)+2kπ,k∈Z,


    解得-eq \f(π,12)+kπ≤x≤eq \f(5π,12)+kπ,k∈Z,故③正确.


    函数y=3sin 2x的图像向右平移eq \f(π,3) 个单位,得到函数y=3sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(2π,3)))的图像,故④错.





    1.φ对函数y=sin(x+φ)的图像的影响


    函数y=sin(x+φ),x∈R(其中φ≠0)的图像,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.


    2.ω(ω>0)对函数y=sin(ωx+φ)的图像的影响


    函数y=sin(ωx+φ),x∈R(其中ω>0,且ω≠1)的图像,可以看作是把y=sin(x+φ)的图像上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的eq \f(1,ω) (纵坐标不变)而得到的.


    3.A(A>0)对函数y=Asin(ωx+φ)的图像的影响


    函数y=Asin(ωx+φ)(A>0且A≠1)的图像,可以看作是把y=sin(ωx+φ)的图像上所有点的纵坐标伸长(当A>1时)或缩短(当0

    4.由y=sin x变换得到y=Asin(ωx+φ)(A>0,ω>0)的方法


    (1)先平移后伸缩





    (2)先伸缩后平移








    1.(2019·全国卷Ⅱ)若x1=eq \f(π,4) ,x2=eq \f(3π,4) 是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=( )


    A.2 B.eq \f(3,2) C.1 D.eq \f(1,2)


    A [由题意及函数y=sin ωx的图像与性质可知,


    eq \f(1,2)T=eq \f(3π,4)-eq \f(π,4) ,∴T=π,∴eq \f(2π,ω)=π,∴ω=2.故选A.]


    2.要得到y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的图像,只需将y=3sin 2x的图像( )


    A.向左平移eq \f(π,4) 个单位B.向右平移eq \f(π,4) 个单位


    C.向左平移eq \f(π,8) 个单位D.向右平移eq \f(π,8) 个单位


    C [y=3sin 2x的图像y=3sin2x+eq \f(π,8)的图像,即y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的图像.]


    3.函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3)))图像的一条对称轴是________.(填序号)


    ①x=-eq \f(π,2);②x=0;③x=eq \f(π,6);④x=-eq \f(π,6).


    ③ [由正弦函数对称轴可知.


    x+eq \f(π,3)=kπ+eq \f(π,2) ,k∈Z,


    x=kπ+eq \f(π,6) ,k∈Z,


    k=0时,x=eq \f(π,6).]


    4.如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图像的一部分,试求该函数的解析式.





    [解] 由图像可知A=2,T=4×(6-2)=16,ω=eq \f(2π,T)=eq \f(π,8).又x=6时,eq \f(π,8)×6+φ=0,∴φ=-eq \f(3π,4) ,且|φ|<π.


    ∴所求函数的解析式为y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,8)x-\f(3π,4)))


    学 习 目 标
    核 心 素 养
    1.了解正弦型函数y=Asin(ωx+φ)的实际意义及各参数对图像变化的影响,会求其周期、最值、单调区间等.(重点)


    2.会用“图像变换法”作正弦型函数y=Asin(ωx+φ)的图像.(难点)
    通过正弦型函数y=Asin(ωx+φ)图像和性质的学习,培养学生的直观想象和逻辑推理核心素养.
    正弦型函数的性质与图像
    x
    eq \f(π,3)
    eq \f(5,6) π
    eq \f(4,3) π
    eq \f(11,6) π
    eq \f(7,3) π
    x-eq \f(π,3)
    0
    eq \f(π,2)
    π
    eq \f(3,2) π

    y
    3
    5
    3
    1
    3
    X
    0
    eq \f(π,2)
    π
    eq \f(3π,2)

    x
    eq \f(π,8)
    eq \f(3π,8)
    eq \f(5π,8)
    eq \f(7π,8)
    eq \f(9π,8)
    y
    0
    eq \r(2)
    0
    -eq \r(2)
    0
    正弦型函数的图像变换
    求正弦型函数y=Asin(ωx+φ)的解析式
    正弦型函数y=Asin(ωx+φ)的对称性
    相关学案

    数学必修 第三册7.3.2 正弦型函数的性质与图像学案及答案: 这是一份数学必修 第三册7.3.2 正弦型函数的性质与图像学案及答案,共14页。

    数学必修 第三册第七章 三角函数7.3 三角函数的性质与图像7.3.2 正弦型函数的性质与图像学案: 这是一份数学必修 第三册第七章 三角函数7.3 三角函数的性质与图像7.3.2 正弦型函数的性质与图像学案,共49页。

    人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像学案设计: 这是一份人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像学案设计,共7页。学案主要包含了学习目标,学习重难点,学习过程,学习小结,精炼反馈等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新)人教B版(2019)必修第三册学案:第7章 7.3 7.3.2 正弦型函数的性质与图像(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map