必修 第一册3.4 函数的应用(一)课后测评
展开考查题型一 利用一次函数、二次函数模型解决实际问题
1.你见过古人眼中的烟花吗?那是朱淑真元宵夜的“火树银花触目红”,是隋炀帝眼中的“灯树千光照,花焰七枝开”.烟花,虽然是没有根的花,是虚幻的花,却在达到最高点时爆裂,用其灿烂的一秒换来人们真心的喝彩.已知某种烟花距地面的高度(单位:米)与时间(单位:秒)之间的关系式为,则烟花在冲击后爆裂的时刻是( )
A.第4秒B.第5秒C.第3.5秒D.第3秒
2.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )
A.B.
C.D.
3.将进货单价40元的商品按50元一个售出,能卖出500个;若此商品每涨价1元,其销售量减少10个.为了赚到最大利润,售价应定为 元.
4.某小型服装厂生产一种风衣,日销货量件(单位:件)(∈N*)与货价p(单位:元/件)之间的关系为p=160-2,生产x件所需成本C=100+30(单位:元),当工厂日获利不少于1 000元时,该厂日产量最少生产风衣的件数是
5.某个体经营者把开始六个月试销A,B两种商品的逐月投资金额与所获纯利润列成下表.
该经营者准备在第七个月投入12万元经营这两种商品,但不知A,B两种商品各投入多少万元才合算,请你制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字).
6.某公司每月最多生产100台报警系统装置,生产台的收入函数为(单位:元),其成本函数为(单位:元),利润是收入与成本之差.
(1)求利润函数及利润函数的最大值;
(2)为了促销,如果每月还需投入500元的宣传费用,设每台产品的利润为,求的最大值及此时的值.
考查题型二 分段函数模型的应用
1.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如表所示,若某户居民某月交纳水费60元,则该月用水量 m3.
2.巴拿马运河起着连接美洲南北陆路通道的作用,是世界上最繁忙的运河之一,假设运河上的船只航行速度为(单位:海里/小时),船只的密集度为(单位:艘/海里),当运河上的船只密度为50艘/海里时,河道拥堵,此时航行速度为0;当船只密度不超过5艘/海里时,船只的速度为45海里/小时,数据统计表明:当时,船只的速度是船只密集度的一次函数.
(1)当时,求函数的表达式;
(2)当船只密度为多大时,单位时间内,通过的船只数量可以达到最大值,求出最大值.(取整)
3.我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过立方米,则水价为每立方米元;第二档,若每户每月用水超过立方米,但不超过立方米,则超过部分水价为每立方米元;第三档,若每户每月用水超过立方米,则超过部分水价为每立方米元,同时征收其全月水费的用水调节税.设某户某月用水立方米,水费为元.
(1)试求关于的函数;
(2)若该用户当月水费为元,试求该年度的用水量;
(3)设某月甲用户用水立方米,乙用户用水立方米,若之间符合函数关系:.则当两户用水合计达到最大时,一共需要支付水费多少元?
(多选题)1.几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润(单位:万元)与每月投入的研发经费(单位:万元)有关.已知每月投入的研发经费不高于16万元,且,利润率.现在已投入研发经费9万元,则下列判断正确的是( )
A.此时获得最大利润率B.再投入6万元研发经费才能获得最大利润
C.再投入1万元研发经费可获得最大利润率D.再投入1万元研发经费才能获得最大利润
2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品万件时的生产成本为 (万元).一万件售价为万元,为获取更大利润,该企业一个月应生产该商品数量为 _______万件.
3.定义区间(a,b),[a,b],(a,b],[a,b]的长度为d=b-a,多个区间并集的长度为各区间长度之和,例如:(1,2)[3,5]的长度d=(2-1)+(5-3)=3,设f(x)=[x]•{x},g(x)=x-1,其中[x]表示不超过x的最大整数,{x}=x-[x],若用d表示不等式f(x)≥g(x)解集区间的长度,则当时x∈[-2009,2009],d= .
4.A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上.根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元.已知学生家长与教师的人数之比为,从A到B的火车票价格(部分)如下表所示:
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票只能买x张(x小于参加社会实践的人数),其余的需买一等座火车票,在保证每位参与人员都有座位的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.
(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?
5.众所周知,大包装商品的成本要比小包装商品的成本低.某种品牌的饼干,其100克装的售价为1.6元,其400克装的售价为4.8元,假定该商品的售价由三部分组成:生产成本、包装成本、利润.生产成本与饼干质量成正比且系数为,包装成本与饼干质量的算术平方根成正比且系数为,利润率为,试写出该种饼干900克装的合理售价.
投资A种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.65
1.39
1.85
2
1.84
1.40
投资B种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.30
0.59
0.88
1.20
1.51
1.79
每户每月用水量
水价
不超过12m3的部分
3元/m3
超过12m3但不超过18m3的部分
6元/m3
超过18m3的部分
9元/m3
运行区间
公布票价
学生票
上车站
下车站
一等座
二等座
二等座
A
B
81(元)
68(元)
51(元)
数学必修 第一册3.4 函数的应用(一)随堂练习题: 这是一份数学必修 第一册<a href="/sx/tb_c4000270_t7/?tag_id=28" target="_blank">3.4 函数的应用(一)随堂练习题</a>,共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册3.4 函数的应用(一)优秀课后测评: 这是一份高中数学人教A版 (2019)必修 第一册3.4 函数的应用(一)优秀课后测评,共7页。试卷主要包含了01),5min 3min等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册3.4 函数的应用(一)当堂达标检测题: 这是一份高中数学人教A版 (2019)必修 第一册3.4 函数的应用(一)当堂达标检测题,共7页。