资料中包含下列文件,点击文件名可预览资料内容
还剩12页未读,
继续阅读
成套系列资料,整套一键下载
- 突破3.3 幂函数(重难点突破)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册) 试卷 67 次下载
- 突破3.4 函数的应用(一)(课时训练)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册) 试卷 54 次下载
- 第三章 函数的概念与性质单元测试(基础版)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册) 试卷 84 次下载
- 第三章 函数的概念与性质单元测试(拔高版)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册) 试卷 73 次下载
- 突破4.1 指数(课时训练)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册) 试卷 58 次下载
突破3.4 函数的应用(一)(重难点突破)-【新教材精选】2022-2023学年高一数学重难点课时训 (人教A版2019必修第一册)
展开
突破3.4 函数的应用(一)一、考情分析二、考点梳理考点1 (1).一次函数模型的实际应用一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.(2).一次函数的最值求解一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.考点2 二次函数模型的解析式为gx=ax2+bx+ca≠0.在函数建模中,它占有重要的地位.在根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.二次函数求最值最好结合二次函数的图象来解答.考点3(1).分段函数的“段”一定要分得合理,不重不漏.(2).分段函数的定义域为对应每一段自变量取值范围的并集.(3).分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.三、题型突破(一) 一次函数模型的应用一次函数为:例1.(1)(2021·全国高一课时练习)甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发 B.乙比甲跑的路程多C.甲、乙两人的速度相同 D.甲比乙先到达终点(2).(2021·蚌埠田家炳中学高二月考(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A. B.C. D.【变式训练1-1】、(2021·全国高一专题练习)某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A.310元 B.300元 C.290元 D.280元【变式训练1-2】、(2020·浙江高一课时练习)某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为( )A.200本 B.400本 C.600本 D.800本【变式训练1-3】、(2020·全国高一课时练习) 一水池有2个进水口、1个出水口,2个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.二次函数模型的应用二次函数:形如例2.(2021·全国高一课时练习)如图所示,已知边长为8米的正方形钢板有一个角(阴影三角形)被锈蚀,其中米,米,为了合理利用这块钢板,将在五边形内截取一个矩形块,使点在边上.(1)设米,米,将表示成的函数,并求出的取值范围;(2)求矩形面积的最大值.【变式训练2-1】.(2018·山东高一期中)信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?(三) 分段函数模型的应用例3.(1)(2020·全国高二课时练习)某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与产量x的关系式为R(x)= 则总利润最大时,每年生产的产品是 ( )A.100单位 B.150单位 C.200单位 D.300单位【变式训练3-1】.(2020·浙江高一课时练习)已知、两地相距千米,某人开汽车以千米/小时的速度从到达地,在地停留小时后再以千米/小时的速度返回地,把汽车离开地的距离表示为时间的函数,表达式为__________.【变式训练3-2】.(2020·全国)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费:超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是( )A.出租车行驶2km,乘客需付费8元B.出租车行驶4km,乘客需付费9.6元C.出租车行驶10km,乘客需付费25.45元D.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用E.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km例4.(2021·江苏高二月考)党中央、国务院对节能减排高度重视,各地区、各部门认真贯彻党中央、国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,经济提质增效,建设生态文明的重要抓手,取得重要进展.新能源汽车环保、节能、以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2020年常州某企业计划引进新能源汽车生产设备,通过市场分析:全年需投入固定成本2500万元.每生产(百辆)新能源汽车,需另投入成本万元,且.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2020年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售-成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.【变式训练4-1】.(2020·桂林市临桂区五通中学高一期中)某租赁公司有750辆电动汽车供租赁使用,管理这些电动汽车的费用是每日元.根据调查发现,若每辆电动汽车的日租金不超过90元,则电动汽车可以全部租出;若超过90元,则每超过1元,租不出去的电动汽车就增加3辆.设每辆电动汽车的日租金为元(),用(单位:元)表示出租电动汽车的日净收入.(日净收入等于日出租电动汽车的总收入减去日管理费用)(1)求关于的函数解析式;(2)试问当每辆电动汽车的日租金为多少元时?才能使日净收入最多,并求出日净收入的最大值.(四) 生产生活中的“最优化” 问题例5.(2020·陕西长安一中高一开学考试)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为( ).A.x=15,y=12 B.x=12,y=15C.x=14,y=10 D.x=10,y=14【变式训练5-1】.(2020·四川成都七中高二期中)把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A. B. C. D.四、定时训练(30分钟)1.(2022·全国高三专题练习)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是( )A. B. C. D.2.(2021·全国高一专题练习)2011年12月,某人的工资纳税额是元,若不考虑其他因素,则他该月工资收入为注:本表所称全月应纳税所得额是以每月收入额减去(起征点)后的余额.A.7000元 B.7500元 C.6600元 D.5950元3.(2021·全国高一专题练习)若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A.B.C. D.4.(2021·全国高一专题练习)某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(如图),由于地形限制,长、宽都不能超过16米.如果池四周围壁建造单价为400元/米,中间两道隔壁墙建造单价为248元/米,池底建造单价为每平方米80元,池壁的厚度忽略不计.设污水池的长为米,总造价为(元),则的解析式为( )A.B.C.D.5.(2021·全国高一课时练习)为了节约用电,某城市对居民生活用电实行“阶梯电价”,计费方法如下:若某户居民本月交纳的电费为380元,则此户居民本月用电量为( )A.475度 B.575度 C.595.25度 D.603.75度6.(2021·全国高一专题练习)某航空公司规定,乘机所携带行李的重量()与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为______ . 7.(2021·全国高一课时练习)(多选题)在某种金属材料的耐高温实验中,温度随着时间变化的情况由计算机记录后显示的图象如图所示.则下列说法正确的是( )A.前5min温度增加的速度越来越快B.前5min温度增加的速度越来越慢C.5min以后温度保持匀速增加D.5min以后温度保持不变8.(2021·全国高一专题练习)(多选题)已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干采用两种包装,其包装费用、销售价格如表所示:则下列说法正确的是( )A.买小包装实惠B.买大包装实惠C.卖3小包比卖1大包盈利多D.卖1大包比卖3小包盈利多9.(2021·全国高一课时练习)(多选题)某工厂八年来某种产品总产量(即前年年产量之和)与时间(年)的函数关系如图,下列几种说法中正确的是( )A.前三年中,总产量的增长速度越来越慢B.前三年中,年产量的增长速度越来越慢C.第三年后,这种产品停止生产D.第三年后,年产量保持不变10.(2020·四川省江油市第一中学高一期中)某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足.设甲合作社的投入为x(单位:万元),两个合作社的总收益为f(x)(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?11.(2021·全国高一专题练习)某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).(1)求函数的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?级数全月应纳税所得额税率(%)1不超过元32元10每户每月用电量电价不超过230度的部分0.5元/度超过230度但不超过400度的部分0.6元/度超过400度的部分0.8元/度型号小包装大包装质量100克300克包装费0.5元0.7元销售价格3.00元8.4元
相关资料
更多