终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    苏科版八年级数学上册专题1.3全等三角形的九大经典模型同步特训(学生版+解析)

    立即下载
    加入资料篮
    苏科版八年级数学上册专题1.3全等三角形的九大经典模型同步特训(学生版+解析)第1页
    苏科版八年级数学上册专题1.3全等三角形的九大经典模型同步特训(学生版+解析)第2页
    苏科版八年级数学上册专题1.3全等三角形的九大经典模型同步特训(学生版+解析)第3页
    还剩79页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中1.2 全等三角形随堂练习题

    展开

    这是一份初中1.2 全等三角形随堂练习题,共82页。

    TOC \ "1-3" \h \u
    \l "_Tc21418" 【题型1 平移模型】 PAGEREF _Tc21418 \h 1
    \l "_Tc13938" 【题型2 轴对称模型】 PAGEREF _Tc13938 \h 3
    \l "_Tc32049" 【题型3 旋转模型】 PAGEREF _Tc32049 \h 4
    \l "_Tc11934" 【题型4 一线三等角模型】 PAGEREF _Tc11934 \h 6
    \l "_Tc20622" 【题型5 倍长中线模型】 PAGEREF _Tc20622 \h 8
    \l "_Tc12933" 【题型6 截长补短模型】 PAGEREF _Tc12933 \h 10
    \l "_Tc13816" 【题型7 手拉手模型】 PAGEREF _Tc13816 \h 12
    \l "_Tc28043" 【题型8 角平分线模型】 PAGEREF _Tc28043 \h 15
    \l "_Tc1855" 【题型9 半角全等模型】 PAGEREF _Tc1855 \h 16
    【知识点1 平移模型】
    【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.
    【常见模型】
    【题型1 平移模型】
    【例1】(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是( )
    A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分
    【变式1-1】(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB =CD,BC = DE.
    (1)求证:△ABC≌△CDE;
    (2)将△ABC沿射线AC方向平移得到△A'B'C' ,边B'C'与边CD的交点为F ,连接EF,若EF将CDE分为面积相等的两部分,且AB = 4,则 CF =
    【变式1-2】(2023春·重庆·八年级校考期中)如图,将△ABC沿射线BC方向平移得到△DCE,连接BD交AC于点F.
    (1)求证:△AFB≌ △CFD;
    (2)若AB=9,BC=7,求BF的取值范围.
    【变式1-3】(2023春·八年级课时练习)已知△ABC,AB=AC,∠ABC=∠ACB,将△ABC沿BC方向平移得到△DEF.如图,连接BD、AF,则BD__________AF(填“>”“AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;
    (2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.
    【知识点4 一线三等角模型】
    【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.

    【题型4 一线三等角模型】
    【例4】(2023春·山东菏泽·八年级校联考阶段练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;
    (2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.
    (3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.
    【变式4-1】(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于( )
    A.3B.2C.94D.92
    【变式4-2】(2023春·上海·八年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:
    [模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.
    [模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.
    [深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为_____________.
    【变式4-3】(2023春·八年级课时练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.
    (2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.
    (3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)
    【知识点5 倍长中线模型模型】
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
    【常见模型】

    【题型5 倍长中线模型】
    【例5】(2023春·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值 范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:
    (1)小明证明△BED≅△CAD用到的判定定理是: (用字母表示);
    (2)AD的取值范围是 ;
    (3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB=AC.
    【变式5-1】(2023春·黑龙江哈尔滨·八年级哈尔滨风华中学校考期中)如图,△ABC中,点D在AC上,AD=3,AB+AC=10,点E是BD的中点,连接CE,∠ACB=∠ABC+2∠BCE,则CD= .
    【变式5-2】(2023春·全国·八年级阶段练习)如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,AM=3,DE= .
    【变式5-3】(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.
    小明的解法如下:延长AD到点E,使DE=AD,连接CE.
    在△ABD与△ECD中BD=DC∠ADB=∠EDCAD=DE
    ∴△ABD≅△ECD(SAS)
    ∴AB= .
    又∵在△AEC中EC﹣AC<AE<EC+AC,而AB=EC=7,AC=5,
    ∴ <AE< .
    又∵AE=2AD.
    ∴ <AD< .
    【探索应用】如图②,AB∥CD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为 .(直接写答案)
    【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.
    【知识点6 截长补短模型】
    【模型解读】截长补短的方法适用于求证线段的和差倍分关系。截长: 指在长线段中截取一段等于已知线
    段: 补短: 指将短线段延长, 延长部分等于已知线段。该类题目中常出现等服三角形、角平分线等关键词
    句, 可以采用截长补短法构造全等三角形来完成证明过程, 截长补短法(往往需证2次全等) 。
    【模型图示】
    (1)截长: 在较长线段上截取一段等于某一短线段, 再证剩下的那一段等于另一短线段。
    例: 如图, 求证BE+DC=AD;
    方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
    (2)补短:将短线段延长,证与长线段相等
    【题型6 截长补短模型】
    【例6】(2023·浙江·八年级假期作业)如图①,△ABC和△BDC是等腰三角形,且AB=AC,BD=CD,∠BAC=80°,∠BDC=100°,以D为顶点作一个50°角,角的两边分别交边AB,AC于点E、F,连接EF.
    (1)探究BE、EF、FC之间的关系,并说明理由;
    (2)若点E、F分别在AB、CA延长线上,其他条件不变,如图②所示,则BE、EF、FC之间存在什么样的关系?并说明理由.
    【变式6-1】(2023·江苏·八年级假期作业)如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为( )
    A.6B.7C.8D.9
    【变式6-2】(2023春·八年级课时练习)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.
    (1)求证:∠BFC=90°+12∠A;
    (2)已知∠A=60°.
    ①如图1,若BD=4,BC=6.5,求CE的长;
    ②如图2,若BF=AC,求∠AEB的大小.
    【变式6-3】(2023春·全国·八年级专题练习)阅读下面材料:
    【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.
    【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).
    【问题解答】(1)参考提示的方法,解答原题呈现中的问题;
    (2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.
    【知识点7 手拉手模型】
    【模型解读】 如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,
    ∠BAC=∠DAE=。结论:△BAD≌△CAE。
    【模型分析】手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
    【题型7 手拉手模型】
    【例7】(2023·江苏·八年级假期作业)如图,△ABC是一个锐角三角形,分别以AB、AC为边向外作等边三角形△ABD、△ACE,连接BE、CD交于点F,连接AF.
    (1)求证:△ABE≌△ADC;
    (2)求∠EFC的度数;
    (3)求证:AF平分∠DFE.
    【变式7-1】(2023春·上海·八年级专题练习)如图,大小不同的等腰直角三角形△ABC和△DEC直角顶点重合在点C处,连接AE、BD,点A恰好在线段BD上.
    (1)找出图中的全等三角形,并说明理由;
    (2)猜想AE与BD的位置关系,并说明理由.
    【变式7-2】(2023·江苏·八年级假期作业)如图,若△ACB 和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE.
    (1)求证:△ACD≌△BCE;
    (2)若CM=2,BE=3,求AE的长.
    【变式7-3】(2023春·全国·八年级专题练习)已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.
    (1)如图1,若∠DAB=60°,则∠AFG= ;
    (2)如图2,若∠DAB=90°,则∠AFG= ;
    (3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.
    【知识点8 角平分线模型】
    模型一:如图一,角平分线+对称型
    利用角平分线图形的对称性, 在角的两边构造对称全等三角形, 可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移, 这是经常使用的---种解题技巧。
    【理论依据】: 三边对应相等的三角戏是全等三角形(SSS)、全等三角形对应角相等
    模型二:如图二,角平分线+垂直两边型
    【几何语言】:∵OC为∠AOB的角平分线, D为OC上一点DE⊥OA, DF⊥OB
    ∴△CED≌△OFD(AAS),
    ∴DE=DF
    模型三:如图三,角平分线+垂直平分线型
    【说明】构造此模型可以利用等腰三角形的 三线合一, 也可以得到两个全等的直角三角形, 进而
    得到对应边、对应角相等。这个模型巧妙地把角平分线和三线合一联系了起来。
    模型四:如图四,角平分线+平行线型
    【说明】 有角平分线时, 常过角平分线上一点作角的有边的平行线, 构造等腰三角形, 为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
    【题型8 角平分线模型】
    【例8】(2023春·浙江·八年级期中)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.
    (1)求证:BD=CE;
    (2)若AB=6cm,AC=10cm,求AD的长.
    【变式8-1】(2023春·八年级课时练习)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=36°,则∠CAP= .
    【变式8-2】(2023春·江苏·八年级专题练习)如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.求证:BE=12CD.
    【变式8-3】(2023春·八年级课时练习)(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.
    (3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.
    【知识点9 半角模型】
    【模型解读】 如图:已知∠2=12∠AOB,OA=OB
    【说明】连接F′B,将△FOB绕点O旋转至△FOA的位置,连接F′E、FE,可得△OEF′≌△OEF
    【题型9 半角全等模型】
    【例9】(2023春·四川达州·八年级统考期末)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系: ;
    (2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?请写出证明过程;
    (3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系: .
    【变式9-1】(2023·浙江·八年级假期作业)如图,在Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,D、E是斜边BC上两点,且∠DAE=45°,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和为( )
    A.36B.21C.30D.22
    【变式9-2】(2023春·上海·八年级专题练习)问题情境
    在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
    特例探究
    如图1,当DM=DN时,
    (1)∠MDB= 度;
    (2)MN与BM,NC之间的数量关系为 ;
    归纳证明
    (3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
    拓展应用
    专题1.3 全等三角形的九大经典模型【九大题型】
    【苏科版】
    TOC \ "1-3" \h \u
    \l "_Tc21418" 【题型1 平移模型】 PAGEREF _Tc21418 \h 1
    \l "_Tc13938" 【题型2 轴对称模型】 PAGEREF _Tc13938 \h 6
    \l "_Tc32049" 【题型3 旋转模型】 PAGEREF _Tc32049 \h 11
    \l "_Tc11934" 【题型4 一线三等角模型】 PAGEREF _Tc11934 \h 19
    \l "_Tc20622" 【题型5 倍长中线模型】 PAGEREF _Tc20622 \h 26
    \l "_Tc12933" 【题型6 截长补短模型】 PAGEREF _Tc12933 \h 34
    \l "_Tc13816" 【题型7 手拉手模型】 PAGEREF _Tc13816 \h 43
    \l "_Tc28043" 【题型8 角平分线模型】 PAGEREF _Tc28043 \h 51
    \l "_Tc1855" 【题型9 半角全等模型】 PAGEREF _Tc1855 \h 57
    【知识点1 平移模型】
    【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.
    【常见模型】
    【题型1 平移模型】
    【例1】(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是( )
    A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分
    【答案】A
    【分析】根据平移的性质得到∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,由于只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,则可对A、B、C选项的进行判断;AC交DE于O点,如图,证明△AOD≌△COE得到OD=OE,OA=OC,则可对D选项进行判断.
    【详解】解:∵△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,
    ∴∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,
    只有当∠BAC=90°时,AC⊥DE;
    只有当BC=2AC时,DF=AC=BE,所以A、B、C选项的结论不一定正确;
    ∵AD∥BC,
    ∴∠OAD=∠OCE,∠ODA=∠OEC,
    而AD=CE,
    ∴△AOD≌△COE(ASA),
    ∴OD=OE,OA=OC
    即AC、 DE互相平分,所以D选项的结论正确.
    故选:D.
    【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.
    【变式1-1】(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB =CD,BC = DE.
    (1)求证:△ABC≌△CDE;
    (2)将△ABC沿射线AC方向平移得到△A'B'C' ,边B'C'与边CD的交点为F ,连接EF,若EF将CDE分为面积相等的两部分,且AB = 4,则 CF =
    【答案】(1)见解析
    (2)2
    【分析】(1)首先由点C为AE的中点得出AC=CE,再根据SSS证明△ABC≌△CDE即可;
    (2)根据平移的性质得A'B'=CD=AB=4,再由EF将CDE分为面积相等的两部分得CF=DF=12CD=2
    【详解】(1)证明:∵点C为AE的中点,
    ∴AC=CE
    在△ABC和△CDE中,
    AB=CDBC=DEAC=CE
    ∴△ABC≌△CDE
    (2)解:将△ABC沿射线AC方向平移得到ΔA'B'C',且AB = 4,
    ∴A'B'=CD=AB=4,
    ∵边B'C'与边CD的交点为F ,连接EF,EF将CDE分为面积相等的两部分,如图
    ∴CF=DF=12CD=2,
    故答案为:2
    【点睛】本题主要考查了全等三角形的判定以及平移的性质,根据SSS证明△ABC≌△CDE是解答本题的关键.
    【变式1-2】(2023春·重庆·八年级校考期中)如图,将△ABC沿射线BC方向平移得到△DCE,连接BD交AC于点F.
    (1)求证:△AFB≌ △CFD;
    (2)若AB=9,BC=7,求BF的取值范围.
    【答案】(1)见解析
    (2)1AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;
    (2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.
    【答案】(1)60°
    (2)BF+CF=2CN,理由见解析
    【分析】(1)如图1中,在射线CD上取一点K,使得CK=BE,证明ΔBCE≅ΔCBK(SAS),推出BK=CE,∠BEC=∠BKD,再证明∠ADF+∠AEF=180°,可得结论;
    (2)结论:BF+CF=2CN.首先证明∠BFC=120°.如图2中,延长CN到Q,使得NQ=CN,连接FQ,证明ΔCNM≅ΔQNF(SAS),推出FQ=CM=BC,延长CF到P,使得PF=BF,则ΔPBF是等边三角形,再证明ΔPFQ≅ΔPBC(SAS),推出PQ=PC,∠CPB=∠QPF=60°,推出ΔPCQ是等边三角形,可得结论
    【详解】(1)解:如图1中,在射线CD上取一点K,使得CK=BE,
    在ΔBCE和ΔCBK中,
    BC=CB∠BCE=∠CBEBE=CK,
    ∴ΔBCE≅ΔCBK(SAS),
    ∴BK=CE,∠BEC=∠BKD,
    ∵CE=BD,
    ∴BD=BK,
    ∴∠BKD=∠BDK=∠ADC=∠CEB,
    ∵∠BEC+∠AEF=180°,
    ∴∠ADF+∠AEF=180°,
    ∴∠A+∠EFD=180°,
    ∵∠A=60°,
    ∴∠EFD=120°,
    ∴∠CFE=180°-120°=60°.
    (2)结论:BF+CF=2CN.
    理由:如图2中,∵AB=AC,∠A=60°,
    ∴ΔABC是等边三角形,
    ∴AB=CB,∠A=∠CBD=60°,
    ∵AE=BD,
    ∴ΔABE≅ΔBCD(SAS),
    ∴∠BCF=∠ABE,
    ∴∠FBC+∠BCF=60°,
    ∴∠BFC=120°,
    如图2中,延长CN到Q,使得NQ=CN,连接FQ,
    ∵NM=NF,∠CNM=∠FNQ,CN=NQ,
    ∴ΔCNM≅ΔQNF(SAS),
    ∴FQ=CM=AC=BC,∠M=∠NFQ,
    ∴FQ ∥CM,
    ∴∠PFQ=∠FCM.
    延长CF到P,使得PF=BF,
    ∵∠BFP=180°-120°=60°,
    ∴ΔPBF是等边三角形,
    ∴∠PBC+∠PCB=∠PCB+∠FCM=120°,
    ∴∠PFQ=∠FCM=∠PBC,
    ∵PB=PF,
    ∴ΔPFQ≅ΔPBC(SAS),
    ∴PQ=PC,∠CPB=∠QPF=60°,
    ∴ΔPCQ是等边三角形,
    ∴BF+CF=PF+CF=PC=PQ=QC=2CN.
    【点睛】本题考查了旋转的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.
    【知识点4 一线三等角模型】
    【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.

    【题型4 一线三等角模型】
    【例4】(2023春·山东菏泽·八年级校联考阶段练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;
    (2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.
    (3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.
    【答案】(1)见详解;(2)成立,理由见详解;(3)见详解
    【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断ΔADB≌ΔCEA;
    (2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,然后问题可求证;
    (3)由题意易得BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,由(1)(2)易证ΔADB≌ΔCEA,则有AE=BD,然后可得∠FBD=∠FAE,进而可证ΔDBF≌ΔEAF,最后问题可得证.
    【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,
    ∴∠BDA=∠CEA=90°,
    ∵∠BAC=90°,
    ∴∠BAD+∠CAE=90°,
    ∵∠BAD+∠ABD=90°,
    ∴∠CAE=∠ABD,
    ∵在ΔADB和ΔCEA中,
    ∠ABD=∠CAE∠BDA=∠CEAAB=AC,
    ∴ΔADB≌ΔCEA(AAS);
    解:(2)成立,理由如下:
    ∵∠BDA=∠BAC=α,
    ∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,
    ∴∠CAE=∠ABD,
    ∵在ΔADB和ΔCEA中,
    ∠ABD=∠CAE∠BDA=∠CEAAB=AC,
    ∴ΔADB≌ΔCEA(AAS);
    (3)证明:∵△ABF和△ACF均为等边三角形,
    ∴BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,
    ∴∠BDA=∠AEC=∠BAC=120°,
    ∴∠DBA+∠BAD=∠BAD+∠CAE=180°−120°,
    ∴∠CAE=∠ABD,
    ∴ΔADB≌ΔCEA(AAS),
    ∴AE=BD,
    ∵∠FBD=∠FBA+∠ABD,∠FAE=∠FAC+∠CAE,
    ∴∠FBD=∠FAE,
    ∴ΔDBF≌ΔEAF(SAS),
    ∴FD=FE,∠BFD=∠AFE,
    ∴∠BFA=∠BFD+∠DFA=∠AFE+∠DFA=∠DFE=60°,
    ∴△DFE是等边三角形.
    【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.
    【变式4-1】(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于( )
    A.3B.2C.94D.92
    【答案】A
    【分析】根据等腰三角形的性质得到∠B=∠C,推出∠BAD=∠CDE,根据线段垂直平分线的性质得到AD=ED,根据全等三角形的性质得到CD=AB=9,BD=CE,即可得到结论.
    【详解】解:∵AB=AC=9,
    ∴∠B=∠C,
    ∵∠ADE=∠B,∠BAD=180°﹣∠B﹣∠ADB,∠CDE=180°﹣∠ADE﹣∠ADB,
    ∴∠BAD=∠CDE,
    ∵AE的中垂线交BC于点D,
    ∴AD=ED,
    在△ABD与△DCE中,
    ∠BAD=∠CDE∠B=∠CAD=ED,
    ∴△ABD≌△DCE(AAS),
    ∴CD=AB=9,BD=CE,
    ∵CD=3BD,
    ∴CE=BD=3
    故选:A.
    【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的性质,属于基础题.
    【变式4-2】(2023春·上海·八年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:
    [模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.
    [模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.
    [深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为_____________.
    【答案】[模型呈现]见解析;[模型应用]50;[深入探究]63
    【分析】[模型呈现]证明△ABC≌△DAE,根据全等三角形的对应边相等得到BC=AE;
    [模型应用]根据全等三角形的性质得到AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,根据梯形的面积公式计算,得到答案;
    [深入探究]过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,根据全等三角形的性质得到DP=AF=12,EQ=AF=12,AP=BF,AQ=CF,证明△DPG≌△EQG,得到PG=GQ.,进而求出AG,根据三角形的面积公式计算即可.
    【详解】[模型呈现]证明:∵∠BAD=90°,
    ∴∠BAC+∠DAE=90°,
    ∵BC⊥AC,DE⊥AC,
    ∴∠ACB=∠DEA=90°,
    ∴∠BAC+∠ABC=90°,
    ∴∠ABC=∠DAE,
    在△ABC和△DAE中,
    ∠ABC=∠DAE∠ACB=∠DAEBA=AD,
    ∴△ABC≌△DAE(AAS),
    ∴BC=AE;
    [模型应用]解:由[模型呈现]可知,△AEP≌△BAG,△CBG≌△DCH,
    ∴AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,
    则S实线围成的图形=12(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50,
    故答案为:50;
    [深入探究]过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,
    由[模型呈现]可知,△AFB≌△DPA,△AFC≌△EQA,
    ∴DP=AF=12,EQ=AF=12,AP=BF,AQ=CF,
    在△DPG和△EQG中,
    ∠DPG=∠EQG∠DGP=∠EGQDP=EQ,
    ∴△DPG≌△EQG(AAS),
    ∴PG=GQ,
    ∵BC=21,
    ∴AQ+AP=21,
    ∴AP+AP+PG+PG=21,
    ∴AG=AP+PG=10.5,
    ∴S△ADQ=12×10.5×12=63,
    故答案为:63.
    【点睛】本题考查的是全等三角形的判定和性质、三角形的面积计算,熟记三角形确定的判定定理是解题的关键.
    【变式4-3】(2023春·八年级课时练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.
    (2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.
    (3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)
    【答案】(1)0.8cm;(2)见解析(3)5
    【分析】(1)利用AAS定理证明△CEB≌△ADC,根据全等三角形的性质解答即可;
    (2)由条件可得∠BEA=∠AFC,∠4=∠ABE,根据AAS可证明△ABE≌△CAF;
    (3)先证明△ABE≌△CAF,得到ΔACF与ΔBDE的面积之和为△ABD的面积,再根据CD=2BD故可求解.
    【详解】解:(1)∵BE⊥CE,AD⊥CE,
    ∴∠E=∠ADC=90°,
    ∴∠EBC+∠BCE=90°.
    ∵∠BCE+∠ACD=90°,
    ∴∠EBC=∠DCA.
    在△CEB和△ADC中,{∠E=∠ADC∠EBC=∠DCABC=AC
    ∴△CEB≌△ADC(AAS),
    ∴BE=DC,CE=AD=2.5cm.
    ∵DC=CE−DE,DE=1.7cm,
    ∴DC=2.5−1.7=0.8cm,
    ∴BE=0.8cm
    故答案为:0.8cm;
    (2)证明:∵∠1=∠2,
    ∴∠BEA=∠AFC.
    ∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,
    ∴∠BAC=∠ABE+∠3,
    ∴∠4=∠ABE.
    ∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,
    ∴△ABE≌△CAF(AAS).
    (3)∵∠BED=∠CFD=∠BAC
    ∴∠ABE+∠BAE=∠FAC+∠BAE=∠FAC+∠ACF
    ∴∠ABE=∠CAF,∠BAE=∠ACF
    又AB=AC
    ∴△ABE≌△CAF,
    ∴S△ABE=S△CAF
    ∴ΔACF与ΔBDE的面积之和等于ΔABE与ΔBDE的面积之和,即为△ABD的面积,
    ∵CD=2BD,△ABD与△ACD的高相同
    则S△ABD=13S△ABC=5
    故ΔACF与ΔBDE的面积之和为5
    故答案为:5.
    【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.
    【知识点5 倍长中线模型模型】
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
    【常见模型】

    【题型5 倍长中线模型】
    【例5】(2023春·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值 范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:
    (1)小明证明△BED≅△CAD用到的判定定理是: (用字母表示);
    (2)AD的取值范围是 ;
    (3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB=AC.
    【答案】(1)SAS
    (2)1

    相关试卷

    人教版八年级数学上册同步精品压轴题专题02全等三角形中的六种模型梳理(学生版+解析):

    这是一份人教版八年级数学上册同步精品压轴题专题02全等三角形中的六种模型梳理(学生版+解析),共53页。试卷主要包含了倍长中线模型,截长补短模型,做平行线证明全等,旋转模型,手拉手模型,一线三角模型等内容,欢迎下载使用。

    人教版八年级数学上册同步精品压轴题专题02全等三角形中的六种模型梳理(学生版+解析):

    这是一份人教版八年级数学上册同步精品压轴题专题02全等三角形中的六种模型梳理(学生版+解析),共53页。试卷主要包含了倍长中线模型,截长补短模型,做平行线证明全等,旋转模型,手拉手模型,一线三角模型等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map