2021学年11.1.2 三角形的高、中线与角平分线教学设计
展开1.掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用.(重点)
2.能够准确的画出三角形的高、中线和角平分线.(难点)
一、情境导入
这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.
二、合作探究
探究点一:三角形的高
【类型一】 三角形高的画法
画△ABC的边AB上的高,下列画法中,正确的是( )
解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.
解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选D.
方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.
【类型二】 根据三角形的面积求高
如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为________.
解析:根据垂线段最短,可知当BP⊥AC时,BP有最小值.由△ABC的面积公式可知eq \f(1,2)AD·BC=eq \f(1,2)BP·AC,解得BP=eq \f(24,5).
方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.
探究点二:三角形的中线
【类型一】 应用三角形的中线求线段的长
在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.
解析:如图,∵AD是△ABC的中线,∴BD=CD,∴△ABD的周长-△ADC的周长=(BA+BD+AD)-(AC+AD+CD)=BA-AC,∴BA-5=2,∴BA=7cm.
方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD与△ADC的周长之差转化为边长的差.
【类型二】 利用中线解决三角形的面积问题
如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,则S△ADF-S△BEF=________.
解析:∵点D是AC的中点,∴AD=eq \f(1,2)AC.∵S△ABC=12,∴S△ABD=eq \f(1,2)S△ABC=eq \f(1,2)×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=eq \f(1,3)S△ABC=eq \f(1,3)×12=4.∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故答案为2.
方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.
探究点三:三角形的角平分线
如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.
解析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.
解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.
方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.
三、板书设计
三角形的高、中线与角平分线
1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.
2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.
本节课由实际问题“平分三角形蛋糕”引入,让学生意识到数学与实际生活的密切联系,明确数学来源于实践应用于实践,进而学习用数学方法解决实际问题.然后从画图入手,分三种情况:即锐角三角形、直角三角形和钝角三角形,培养学生形成分类讨论思想,同时,可以在学生头脑中对这三种线段留下清晰的形象,然后结合这些具体形象叙述它们的定义以及表示方法,最后通过例题进一步巩固.
数学八年级上册11.1.2 三角形的高、中线与角平分线教案: 这是一份数学八年级上册11.1.2 三角形的高、中线与角平分线教案,共3页。
初中数学人教版八年级上册11.1.2 三角形的高、中线与角平分线一等奖教学设计及反思: 这是一份初中数学人教版八年级上册11.1.2 三角形的高、中线与角平分线一等奖教学设计及反思
初中数学人教版八年级上册11.1.2 三角形的高、中线与角平分线教案: 这是一份初中数学人教版八年级上册11.1.2 三角形的高、中线与角平分线教案,共4页。教案主要包含了学习目标,重点难点,学习方法,教学用具,学习过程等内容,欢迎下载使用。