初中数学北师大版七年级上册2.11 有理数的混合运算导学案
展开学习目标:
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。
2、经历“二十四”点游戏,培养学生的探究能力
学习重点:有理数混合运算法则。
学习难点:培养探索思维方式。
一、学前准备:
1.-2与-5两数的平方差等于
2、在2,3,4,5,6,7,8,9的前面添加“+”号或“-”号使它们和为零。算式: 。
3、计算:
(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
(3) SKIPIF 1 < 0 (4) SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
二、探究活动:
1.我们已学过哪些运算?
2.请看实例:
一圆形花坛的半径为3m,中间雕塑的底面是边长为1m的正方形。你能用算式表示该花坛的实际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?
3m
1m
列出算式:
3.请同学们说说有理数的混合运算的法则:
一般地, 有理数混合运算的法则是:先算 ,再算 ,最后算 。如有括号,先进行 。
4.混合运算举例:
(1)下列计算错在哪里?应如何改正?
= 1 \* GB3 ① 12÷3× SKIPIF 1 < 0 =12 = 2 \* GB3 ②- SKIPIF 1 < 0 =-6
= 3 \* GB3 ③ SKIPIF 1 < 0 ④74-22÷70=70÷70=1
⑤(-1 eq \f (1,2) )2-23=1 eq \f (1,4) -6 = -4 eq \f (3,4)
⑥ 23-6÷3× eq \f (1,3) =6-6÷1=0
(2)例1计算:
= 1 \* GB3 ①(-6)2×( eq \f (2,3) - eq \f (1,2) )-23; = 2 \* GB3 ② eq \f (5,6) ÷ eq \f (2,3) - eq \f (1,3) ×(-9)2+32
(3)练习:
= 1 \* GB3 ① 1.5-2×(-3); = 2 \* GB3 ② - eq \f (1,2) ×(-2) SKIPIF 1 < 0 ÷ eq \f (2,3)
= 3 \* GB3 ③ 8-8×( eq \f (3,2) )2; = 4 \* GB3 ④ eq \f (3,2) ÷(- eq \f (3,4) )+(- eq \f (2,7) )2×21
5.例2:半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?
SKIPIF 1 < 0
解:水桶内水的体积为 cm3,倒满2个杯子后,剩下的水的体积为 cm3
三、学习体会:
1.本节课你有哪些收获?你还有哪些疑惑?
2.你认为老师上课过程中还有哪些需要注意或改进的地方?
四、自我检测
1、下列计算错在哪里?应如何改正?
= 1 \* GB3 ① SKIPIF 1 < 0
= 2 \* GB3 ② SKIPIF 1 < 0
= 3 \* GB3 ③ SKIPIF 1 < 0 SKIPIF 1 < 0
2、计算:
= 1 \* GB3 ① SKIPIF 1 < 0
= 2 \* GB3 ② SKIPIF 1 < 0
3、按下列程序计算,把答案写在表格内:
输入N 平方 +N ÷N -N 输出答案
五、应用拓展:
下面请同学来玩“24点”游戏
从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,J、Q、K分别代表11、12、13。
(1)甲同学抽到了,7、3、3、7,算式凑成24,7(3+ EQ eq \f (3,7) )=24。
(2)乙同学抽到了,7、3、-3、7,凑成24或-24吗? 。
(3)丙同学抽到了,7、3、-7、-3,凑成24或-24吗? 。
(4)某同学如抽到下列一组牌3、12、-1、-12,你帮她设计一下算式使之能凑成24或-24。
(5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?
试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。
教后记:
。
输入N
3
SKIPIF 1 < 0
-2
-3
。。。
输出答案
1
。。。
北师大版七年级上册2.11 有理数的混合运算导学案: 这是一份北师大版七年级上册2.11 有理数的混合运算导学案,共10页。
北师大版七年级上册2.11 有理数的混合运算优质学案: 这是一份北师大版七年级上册2.11 有理数的混合运算优质学案,共4页。
初中数学鲁教版 (五四制)六年级上册11 有理数的混合运算学案设计: 这是一份初中数学鲁教版 (五四制)六年级上册11 有理数的混合运算学案设计,共2页。学案主要包含了学习目标,知识梳理,典型例题,巩固训练等内容,欢迎下载使用。