所属成套资源:苏科版数学八年级上册单元测试(AB卷)(2份,原卷版+解析版)
苏科版数学八年级上册单元测试第2章 轴对称图形(B卷)(2份,原卷版+解析版)
展开
这是一份苏科版数学八年级上册单元测试第2章 轴对称图形(B卷)(2份,原卷版+解析版),文件包含苏科版数学八年级上册单元测试第2章轴对称图形B卷原卷版doc、苏科版数学八年级上册单元测试第2章轴对称图形B卷解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
班级 姓名 学号 分数 第2章 轴对称(B卷·能力提升练)(时间:120分钟,满分:120分)一、选择题(本题共10小题,每小题3分,共30分。)1.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是( )A.3:20 B.3:40 C.4:40 D.8:202.下列说法中:①关于某直线成轴对称的两个图形一定能完全重合;②线段是轴对称图形;③有一条公共边的两个全等三角形一定关于公共边所在直线对称;④关于某条直线对称的两个图形一定分别位于该直线的两侧.正确有( )A.1个 B.2个 C.3个 D.4个3.如图,射线AB与射线CD平行,点F在射线AB上,∠DCF=70°,AF=a(a为常数,且a>0),P为射线CD上的一动点(不包括端点C),将△CPF沿PF翻折得到△EPF,连接AE,则AE最大时,∠DPE的度数为( )A.30° B.55° C.70° D.90°4.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠DEA=β,∠CEA'=γ,∠BDA'=θ,那么下列式子中不一定成立的是( )A.θ=2α+γ B.θ+α+γ=180° C.90+=β D.a+β=90°+5.如图,AB∥CD,AD∥BC,AD⊥CD,点E为线段BC上一点,将线段AB沿AE折叠,点B的对应点F落在四边形ABCD外侧,连接EF,若AF∥BD,∠ADB=α,则∠DAE为( )A.α B.90°−2α C.45°+ D.45°−6.如图,△ABC的两条内角平分线相交于点D,过点D作一条平分△ABC面积的直线,那么这条直线分成的两个图形的周长比是( )A.2:1 B.1:1 C.2:3 D.3:17.如图,在△ABC中.AB=AC.BC=4,△ABC的面积是24,AC的垂直平分线EF分别交AC,AB边于点E,F,若点D为BC边的中点,点M为线段EF上一动点,连接CM,DM,则CM+DM的最小值为( )A.6 B.10 C.12 D.138.如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN的距离为( )A.1 B.2 C.4 D.1.59.在等边△ABC中,D、E分别为AB、AC边上的动点,BD=2AE,连接DE,以DE为边在△ABC内作等边△DEF,连接CF,当D从点A向B运动(不运动到点B)时,∠ECF大小的变化情况是( )A.不变 B.变小 C.先变大 D.先变大后变小10.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A.①② B.②③ C.①②③ D.①③二、填空题(本题共8小题,每小题3分,共24分。)11.墙上有一个数字式电子钟,在对面墙上的镜子里看到该电子钟显示的时间如图所示,那么它的实际时间是_____.12.如图,直线L为线段AB的垂直平分线,交AB于M,在直线L上取一点C1,使得MC1=MB,得到第一个三角形ABC1;在射线MC1上取一点C2,使得C1C2=BC1;得到第二个三角形△ABC2;在射线MC1上取一点C3,使得C2C3=BC2,得到第三个三角形△ABC3…依次这样作下去,则第2022个三角形△ABC2022中∠AC2022B的度数为_____.13.如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为_____.14.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD于E,AB=6,AC=14,∠ABC=3∠C.则BE=_____.15.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA−CD=3,则BC+DE=_____.16.如图,△ABC是等边三角形,点D在AB上,AD=3BD,∠ACE=∠ADC,CE=CD.G是AC延长线上一点,EG∥AB.连接BE交AC于点F,则的值为_____.17.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有_____.(注:把你认为正确的答案序号都写上)18.如图,已知△ABC中高AD恰好平分边BC,∠B=30°,点P是BA延长线上一点,点O是线段AD上一点且OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的为_____.(填序号)三、解答题(本题共8小题,共66分。)19.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为20cm,AC=8cm,求DC长.20.如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD,垂足为E.求证:AC=2BE.21.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=12cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为多少时,△PBQ是等边三角形?(2)P、Q在运动过程中,△PBQ的形状不断发生变化,当t为多少时,△PBQ是直角三角形?请说明理由.22.如图,在△ABC中,∠A=60°.BE,CF交于点P,且分别平分∠ABC,∠ACB.(1)求∠BPC的度数;(2)连接EF,求证:△EFP是等腰三角形.23.已知OB,OC分别是△ABC的内角∠ABC和外角∠ACE的角平分线.(1)在图1中,已知∠O=25°,求∠BAC的度数.(2)连接OA,如图2,证明OA是外角∠CAD的角平分线.(3)在图2中,已知S△BOC=16,BC=4,AC=5,AB=6,直接写出△ABC的面积.24.△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD,过点B作BF⊥AD于点F.(1)如图1,分别延长AC,BF相交于点E,求证:BE=AD;(2)如图2,若AD平分∠BAC,AD=5,求BF的长;(3)如图3,M是FB延长线上一点,AD平分∠MAC,试探究AC,CD,AM之间的数量关系并说明理由.25.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.(1)如图1,若点M在线段BD上,求∠MCE的度数.(2)如图2,若点M在线段CD上,试探究线段AC、CE、CM之间的数量关系,并证明你的结论.26.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是_____;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(1)问的结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.