![苏科版八年级数学上册专题2.2等腰三角形的性质与判定【十大题型】同步特训(学生版+解析)01](http://img-preview.51jiaoxi.com/2/3/16157949/0-1726196662039/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏科版八年级数学上册专题2.2等腰三角形的性质与判定【十大题型】同步特训(学生版+解析)02](http://img-preview.51jiaoxi.com/2/3/16157949/0-1726196662103/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏科版八年级数学上册专题2.2等腰三角形的性质与判定【十大题型】同步特训(学生版+解析)03](http://img-preview.51jiaoxi.com/2/3/16157949/0-1726196662160/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩65页未读,
继续阅读
所属成套资源:苏科版八年级数学上册专题同步特训(学生版+解析)
成套系列资料,整套一键下载
苏科版八年级数学上册专题2.2等腰三角形的性质与判定【十大题型】同步特训(学生版+解析)
展开
这是一份苏科版八年级数学上册专题2.2等腰三角形的性质与判定【十大题型】同步特训(学生版+解析),共68页。
专题2.2 等腰三角形的性质与判定【十大题型】【苏科版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc3450" 【题型1 根据等边对等角求角度】 PAGEREF _Toc3450 \h 1 HYPERLINK \l "_Toc13550" 【题型2 根据等边对等角证明】 PAGEREF _Toc13550 \h 2 HYPERLINK \l "_Toc32519" 【题型3 根据三线合一求解】 PAGEREF _Toc32519 \h 4 HYPERLINK \l "_Toc28177" 【题型4 根据三线合一证明】 PAGEREF _Toc28177 \h 5 HYPERLINK \l "_Toc19684" 【题型5 根据等腰三角形判定找出图中的等腰三角形】 PAGEREF _Toc19684 \h 6 HYPERLINK \l "_Toc12482" 【题型7 根据等角对等边证明边相等】 PAGEREF _Toc12482 \h 9 HYPERLINK \l "_Toc14229" 【题型8 根据等角对等边求边长】 PAGEREF _Toc14229 \h 10 HYPERLINK \l "_Toc12677" 【题型9 求与图形中任意两点构成等腰三角形的个数】 PAGEREF _Toc12677 \h 11 HYPERLINK \l "_Toc26478" 【题型10 等腰三角形的判定与性质的综合运用】 PAGEREF _Toc26478 \h 12【知识点 等腰三角形】(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).【题型1 根据等边对等角求角度】【例1】(2023春·江苏无锡·八年级校联考期末)如图,在△ABC中,AC=BC,以点B为旋转中心把△ABC按顺时针方向旋转40°得到△A'BC',点A'恰好落在AC上,连接CC',则∠ACC'度数为( ) A.110° B.105° C.100° D.95°【变式1-1】(2023春·广东梅州·八年级校考期末)在△ABC中,AB=AC,BD是AC边上的高,∠ABD=50°,则∠C的度数为 .【变式1-2】(2023春·四川达州·八年级校考期中)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E;……按此做法继续下去,则第n个三角形中以An为顶点的内角度数是( ) A.12n75° B.12n−165° C.12n−175° D.12n85°【变式1-3】(2023春·海南海口·八年级校考期中)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,∠B=∠C=36°,∠BAD=72°,求∠CDE的度数.(2)如图②,若∠ABC=∠ACB=65°,∠CDE=20°,求∠BAD的度数.(3)当点D在直线BC上运动时(不与点B、C重合),试探究∠BAD与∠CDE的数量关系,并说明理由.【题型2 根据等边对等角证明】【例2】(2023春·湖南·八年级期末)如图,在△ABC中,∠A=45°,点D在AB边上,BC=CD,DE⊥AC,BF⊥AC,垂足分别为E,F.(1)求证△DCE≌△CBF;(2)若AB=AC,求证DE=12DB.【变式2-1】(2023春·甘肃张掖·八年级校考期中)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【变式2-2】(2023春·湖北荆州·八年级统考期末)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:∠DBC=∠DCB.【变式2-3】(2023春·辽宁大连·八年级统考期末)如图,已知△ABC为等腰三角形,AB=AC,D为线段CB延长线上一点,连接AD,DE平分∠ADC交AC、AB于点E、F,且∠ADC+32∠ABC=180°.(1)猜想∠DAC与∠ACD的数量关系,并证明;(2)求证AD=DC+EC.【题型3 根据三线合一求解】【例3】(2023春·广东深圳·八年级统考期末)如图,△ABC中,AB=AC,点D为CA延长线上一点,DH⊥BC于点H,点F为AB延长线上一点,连接DF交CB的延长线于点E,点E是DF的中点,若BH=2,BE=2BH,则BC= . 【变式3-1】(2023春·河北邢台·八年级校联考期末)如图,在△ABC中,AB=AC,AD是△ABC的中线,边AB的垂直平分线交AC于点E,连接BE,交AD于点F.若∠C=66°,则∠AFE的度数为( ) A.48° B.62° C.72° D.82°【变式3-2】(2023春·山西临汾·八年级统考期末)如图,在ΔABC中,AB=BC,SΔABC=3cm2,边BC的垂直平分线为l,点D是边AC的中点,点P是l上的动点,当ΔPCD的周长取最小值4时,则AC= .【变式3-3】(2023春·辽宁沈阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,AC=BC,点E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,交AB于点M,点F为边AB上一点,连接CF,∠ACF=∠CBG.(1)若∠FCM=18°,则∠BGC的度数为______;(2)若点G是BD的中点,判断CF与DE的数量关系,并说明理由.【题型4 根据三线合一证明】【例4】(2023春·福建莆田·八年级校考期中)如图,ΔABC中,AB=AC,AD是BC边上的中线,DE//AC(1)求证:EB=ED.(2)求证:AE=DE.【变式4-1】(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,求证: (1)△ABC≌△ADC;(2)AC⊥BD.【变式4-2】(2023春·山东泰安·八年级统考期中)如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB、AC上,DE与DF相等且DE与DF垂直吗?请说明理由;(2)如图②,若点E、F分别在线段AB、CA的延长线上,(1)中的结论是否依然成立?说明理由.【变式4-3】(2023春·河北廊坊·八年级校考期中)如图,在△ABC中,AC=BC,∠A=∠ABC=45°,D为AB中点,点E是AB边上一动点(不含端点A、B),连接CE,点F为CE上一点,BF始终垂直于CE,交直线CD于点G. (1)点E在线段AD上运动(如图1),当CG=AE时,求证:BG=CE;(2)若点E运动到线段BD上(如图2),当CG=AE时,试猜想BG、CE的数量关系是否发生变化,请写出你的结论并加以证明;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图3),求证:△BCE≌△CAM.【题型5 根据等腰三角形判定找出图中的等腰三角形】【例5】(2023春·上海浦东新·八年级校联考期末)已知,如图,在△ABC中,AB=AC,D,E分别在CA,BA的延长线上,且BE=CD,连BD,CE.(1)求证:∠D=∠E;(2)若∠BAC=108°,∠D=36o,则图中共有 个等腰三角形.【变式5-1】(2023春·广西钦州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90度,BC=4,AC=3,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C.3个 D.4个【变式5-2】(2023春·河南南阳·八年级统考期末)如图,△ABC中,∠ABC=72°,∠A=36°,用尺规作图作出射线BD交AC于点D,则图中等腰三角形共有 个. 【变式5-3】(2023春·黑龙江哈尔滨·八年级统考期末)如图1,∠DAB=∠ABC=90°,∠BAC=45°,CE⊥BD.(1)求证:AD=BE;(2)如图2,若点E是AB的中点,连接DE、CD,在不添加其他字母的条件下,写出图中四个等腰三角形.【题型6 根据等角对等边证明等腰三角形】【例6】(2023春·重庆江北·八年级校考期中)如图,在Rt△ACB中,∠ACB=90°,∠CBA与∠CAB的平分线相交于点E,延长AE交BC于点D,过点E作EF⊥AD交AC于F,作EG∥AB交AC于点G.(1)求证:△GEF为等腰三角形;(2)求证:AF+BD=AB.【变式6-1】(2023春·吉林松原·八年级统考期中)如图,∠1+∠2=180°,GP平分∠BGH.(1)求证:△PGH是等腰三角形;(2)若∠1=116°,求∠GPD的度数.【变式6-2】(2023春·广东广州·八年级校考期末)如图,四边形ABCD中,∠DCB+∠CBA=180°,过点D作∠CDE=∠CAB,DE与C交于点D,与AC交于点H.(1)求证:△CHD为等腰三角形;(2)若E为BC中点,猜想AH,HD与EH三者的数量关系.并证明之【变式6-3】(2023春·新疆乌鲁木齐·八年级统考期末)数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【题型7 根据等角对等边证明边相等】【例7】(2023春·江苏扬州·八年级统考期末)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°. (1)求证:AB=BD;(2)设BD与AE交于点F,求证:CE=BF+EF.【变式7-1】(2023春·天津·八年级期中)如图:E在△ABC的AC边的延长线上,AB=AC,D点在AB边上,DE交BC于点F,DF=EF,求证:BD=CE.【变式7-2】(2023春·湖北孝感·八年级统考期末)如图,△ABC中,CA=CB,点D在BC的延长线上,连接AD,AE平分∠CAD交CD于点E,过点E作EF⊥AB,垂足为点F,与AC相交于点G.(1)求证:CG=CE;(2)若∠B=30°,∠CAD=40°,求∠AEF和∠D的度数;(3)求证:∠D=2∠AEF.【变式7-3】(2023春·黑龙江哈尔滨·八年级统考期末)已知:在锐角△ABC中,AD为BC边上的高,∠ABD=2∠CAD.(1)如图1,求证:AB=BC;(2)如图2,点E为AB上一点,且BE=CD,连接DE,∠AED+∠BDE=90°,求证∠ABC=45°;(3)如图3,在(2)的条件下,过B作BF⊥AC于点F,BF交AD于点G,连接CG,若S△CDG=2,求△ABG的面积.【题型8 根据等角对等边求边长】【例8】(2023春·山东聊城·八年级校考期末)如图,AD为△ABC的角平分线.(1)如图 1 ,若CE⊥AD于点 F,交AB于点 E ,AB=8 ,AC=5.求 BE的长.(2)如图 2 ,若∠C=2∠B,点 E 在AB上,且AE=AC,AB=a ,AC=b ,求CD的长;(用含 a 、b 的式子表示)【变式8-1】(2023春·浙江金华·八年级浙江省义乌市稠江中学校联考期中)如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A,B两点望灯塔C,测得∠NAC=35°,∠NBC=70°,则B处到灯塔C的距离为( )A.45海里 B.30海里 C.20海里 D.15海里【变式8-2】(2023春·湖北襄阳·八年级校联考期中)如图,将一张长方形纸片ABCD按图中那样折叠,若AE=5,AB=12,BE=13,则重叠部分(阴影)的面积是 .【变式8-3】(2023春·辽宁盘锦·八年级校考期中)如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=14,△CDB的周长为22,则DB的长为( )A.6 B.7 C.8 D.9【题型9 求与图形中任意两点构成等腰三角形的个数】【例9】(2023春·河北邢台·八年级校考期末)题目:“如图,已知∠AOB=30∘,点M,N在边OA上,OM=x,MN=2,P是射线OB上的点,若使点P,M,N构成等腰三角形的点P恰好有3个,求x的取值范围。”对于其答案,甲答:x=0,乙答:00,n>0,
∴m=2,n=2,
∴CG=22,DG=2,
∵AB=BC,BF⊥AC,
∴AF=CF,
∴AG=CG=22,
∴BD=AD=AG+DG=22+2,
∴S△ABG=12AG⋅BD=12×22×(22+2)=4+22.
【点睛】本题是三角形综合题,考查了等腰直角三角形的判定与性质,三角形的面积公式,等腰三角形的性质,全等三角形的判定与性质,证明△BDG≌△ADC是解题的关键.
【题型8 根据等角对等边求边长】
【例8】(2023春·山东聊城·八年级校考期末)如图,AD为△ABC的角平分线.
(1)如图 1 ,若CE⊥AD于点 F,交AB于点 E ,AB=8 ,AC=5.求 BE的长.
(2)如图 2 ,若∠C=2∠B,点 E 在AB上,且AE=AC,AB=a ,AC=b ,求CD的长;(用含 a 、b 的式子表示)
【答案】(1)BE=3
(2)DC=a−b
【分析】(1)利用ASA证明△AEF≌△ACF,得AE=AC=5,得出答案;
(2)利用ASA证明△ADE≌△ADC,得∠C=∠AED,DC=DE,再证明∠B=∠BDE,得出BE=DE,即可得到结论.
【详解】(1)解:(1)∵AD为△ABC的角平分线,
∴∠BAD=∠CAD,
∵CE⊥AD,
∴∠CFA=∠EFA=90°,
∵在△AEF和△ACF中∠EAF=∠CAFAF=AF∠AFE=∠AFC,
∴△AEF≌△ACFASA,
∴AE=AC=5,
∵AB=8,
∴BE=AB−AC=8−5=3.
(2)∵AD为△ABC的角平分线,
∴∠BAD=∠CAD,
在△ADE和△ADC中AE=AC∠EAD=∠CADAD=AD
∴△ADE≌△ADCSAS
∴∠C=∠AED,DC=DE,
∵∠C=2∠B,
∴∠AED=2∠B,
∵∠AED=∠B+∠BDE
∴∠B=∠BDE,
∴DE=BE,
∴DC=DE=BE=AB−AE=AB−AC=a−b.
【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
【变式8-1】(2023春·浙江金华·八年级浙江省义乌市稠江中学校联考期中)如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A,B两点望灯塔C,测得∠NAC=35°,∠NBC=70°,则B处到灯塔C的距离为( )
A.45海里 B.30海里 C.20海里 D.15海里
【答案】B
【分析】先根据航行速度和时间可得AB=30海里,再根据三角形的外角性质可得∠C=35°,然后根据等腰三角形的判定即可得.
【详解】由题意得:AB=15×10−8=30(海里),
∵∠NAC=35°,∠NBC=70°,
∴∠C=∠NBC−∠NAC=35°,
∴∠C=∠NAC=35°,
∴BC=AB=30海里,
即B处到灯塔C的距离为30海里,
故选:B.
【点睛】本题考查了三角形的外角性质、等腰三角形的判定,熟练掌握等腰三角形的判定是解题关键.
【变式8-2】(2023春·湖北襄阳·八年级校联考期中)如图,将一张长方形纸片ABCD按图中那样折叠,若AE=5,AB=12,BE=13,则重叠部分(阴影)的面积是 .
【答案】78
【分析】根据折叠的性质得到∠CBD=∠EBD,根据AD∥BC可得∠CBD=∠EDB,易得ED=EB,然后根据三角形的面积公式进行计算即可.
【详解】解:∵长方形纸片ABCD按图中那样折叠,
∴∠CBD=∠EBD, AD∥BC
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴ED=EB,
∵AE=5,AB=12,BE=13,
∴DE=13,
∴重叠部分的面积=12DE⋅AB =12×13×12=78.
故答案为:78.
【点睛】本题考查了折叠性质、平行线的性质、等腰三角形的判定、三角形的面积公式,解决本题的关键是掌握折叠的性质.
【变式8-3】(2023春·辽宁盘锦·八年级校考期中)如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=14,△CDB的周长为22,则DB的长为( )
A.6 B.7 C.8 D.9
【答案】A
【分析】利用角平分线与垂直证明△CDE≌△CBE,从而可得CD=CB,再利用等角对等边证明AD=BD,将△CDB的周长转化为AC与BC的和,即可求解.
【详解】解:∵CE⊥DB,
∴∠CED=∠CEB=90°,
∵CE平分∠ACB,
∴∠DCE=∠BCE,
∵CE=CE,
∴△CDE≌△CBE,
∴CD=CB,
∵∠DAB=∠DBA,
∴AD=DB,
∵△CDB的周长为22,
∴CD+CB+BD=22,
∵AC=14,
∴AD+CD=14,
∴BD+CD=14,
∴BC=22−14=8,
∴BC=CD=8,
∴AD=BD=14−8=6,
故选:A.
【点睛】本题考查了等腰三角形的判定与性质,全等三角形的判定和性质,注意结合图形分析各边之间的关系是解题的关键.
【题型9 求与图形中任意两点构成等腰三角形的个数】
【例9】(2023春·河北邢台·八年级校考期末)题目:“如图,已知∠AOB=30∘,点M,N在边OA上,OM=x,MN=2,P是射线OB上的点,若使点P,M,N构成等腰三角形的点P恰好有3个,求x的取值范围。”对于其答案,甲答:x=0,乙答:0
专题2.2 等腰三角形的性质与判定【十大题型】【苏科版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc3450" 【题型1 根据等边对等角求角度】 PAGEREF _Toc3450 \h 1 HYPERLINK \l "_Toc13550" 【题型2 根据等边对等角证明】 PAGEREF _Toc13550 \h 2 HYPERLINK \l "_Toc32519" 【题型3 根据三线合一求解】 PAGEREF _Toc32519 \h 4 HYPERLINK \l "_Toc28177" 【题型4 根据三线合一证明】 PAGEREF _Toc28177 \h 5 HYPERLINK \l "_Toc19684" 【题型5 根据等腰三角形判定找出图中的等腰三角形】 PAGEREF _Toc19684 \h 6 HYPERLINK \l "_Toc12482" 【题型7 根据等角对等边证明边相等】 PAGEREF _Toc12482 \h 9 HYPERLINK \l "_Toc14229" 【题型8 根据等角对等边求边长】 PAGEREF _Toc14229 \h 10 HYPERLINK \l "_Toc12677" 【题型9 求与图形中任意两点构成等腰三角形的个数】 PAGEREF _Toc12677 \h 11 HYPERLINK \l "_Toc26478" 【题型10 等腰三角形的判定与性质的综合运用】 PAGEREF _Toc26478 \h 12【知识点 等腰三角形】(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).【题型1 根据等边对等角求角度】【例1】(2023春·江苏无锡·八年级校联考期末)如图,在△ABC中,AC=BC,以点B为旋转中心把△ABC按顺时针方向旋转40°得到△A'BC',点A'恰好落在AC上,连接CC',则∠ACC'度数为( ) A.110° B.105° C.100° D.95°【变式1-1】(2023春·广东梅州·八年级校考期末)在△ABC中,AB=AC,BD是AC边上的高,∠ABD=50°,则∠C的度数为 .【变式1-2】(2023春·四川达州·八年级校考期中)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E;……按此做法继续下去,则第n个三角形中以An为顶点的内角度数是( ) A.12n75° B.12n−165° C.12n−175° D.12n85°【变式1-3】(2023春·海南海口·八年级校考期中)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,∠B=∠C=36°,∠BAD=72°,求∠CDE的度数.(2)如图②,若∠ABC=∠ACB=65°,∠CDE=20°,求∠BAD的度数.(3)当点D在直线BC上运动时(不与点B、C重合),试探究∠BAD与∠CDE的数量关系,并说明理由.【题型2 根据等边对等角证明】【例2】(2023春·湖南·八年级期末)如图,在△ABC中,∠A=45°,点D在AB边上,BC=CD,DE⊥AC,BF⊥AC,垂足分别为E,F.(1)求证△DCE≌△CBF;(2)若AB=AC,求证DE=12DB.【变式2-1】(2023春·甘肃张掖·八年级校考期中)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【变式2-2】(2023春·湖北荆州·八年级统考期末)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:∠DBC=∠DCB.【变式2-3】(2023春·辽宁大连·八年级统考期末)如图,已知△ABC为等腰三角形,AB=AC,D为线段CB延长线上一点,连接AD,DE平分∠ADC交AC、AB于点E、F,且∠ADC+32∠ABC=180°.(1)猜想∠DAC与∠ACD的数量关系,并证明;(2)求证AD=DC+EC.【题型3 根据三线合一求解】【例3】(2023春·广东深圳·八年级统考期末)如图,△ABC中,AB=AC,点D为CA延长线上一点,DH⊥BC于点H,点F为AB延长线上一点,连接DF交CB的延长线于点E,点E是DF的中点,若BH=2,BE=2BH,则BC= . 【变式3-1】(2023春·河北邢台·八年级校联考期末)如图,在△ABC中,AB=AC,AD是△ABC的中线,边AB的垂直平分线交AC于点E,连接BE,交AD于点F.若∠C=66°,则∠AFE的度数为( ) A.48° B.62° C.72° D.82°【变式3-2】(2023春·山西临汾·八年级统考期末)如图,在ΔABC中,AB=BC,SΔABC=3cm2,边BC的垂直平分线为l,点D是边AC的中点,点P是l上的动点,当ΔPCD的周长取最小值4时,则AC= .【变式3-3】(2023春·辽宁沈阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,AC=BC,点E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,交AB于点M,点F为边AB上一点,连接CF,∠ACF=∠CBG.(1)若∠FCM=18°,则∠BGC的度数为______;(2)若点G是BD的中点,判断CF与DE的数量关系,并说明理由.【题型4 根据三线合一证明】【例4】(2023春·福建莆田·八年级校考期中)如图,ΔABC中,AB=AC,AD是BC边上的中线,DE//AC(1)求证:EB=ED.(2)求证:AE=DE.【变式4-1】(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,求证: (1)△ABC≌△ADC;(2)AC⊥BD.【变式4-2】(2023春·山东泰安·八年级统考期中)如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB、AC上,DE与DF相等且DE与DF垂直吗?请说明理由;(2)如图②,若点E、F分别在线段AB、CA的延长线上,(1)中的结论是否依然成立?说明理由.【变式4-3】(2023春·河北廊坊·八年级校考期中)如图,在△ABC中,AC=BC,∠A=∠ABC=45°,D为AB中点,点E是AB边上一动点(不含端点A、B),连接CE,点F为CE上一点,BF始终垂直于CE,交直线CD于点G. (1)点E在线段AD上运动(如图1),当CG=AE时,求证:BG=CE;(2)若点E运动到线段BD上(如图2),当CG=AE时,试猜想BG、CE的数量关系是否发生变化,请写出你的结论并加以证明;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图3),求证:△BCE≌△CAM.【题型5 根据等腰三角形判定找出图中的等腰三角形】【例5】(2023春·上海浦东新·八年级校联考期末)已知,如图,在△ABC中,AB=AC,D,E分别在CA,BA的延长线上,且BE=CD,连BD,CE.(1)求证:∠D=∠E;(2)若∠BAC=108°,∠D=36o,则图中共有 个等腰三角形.【变式5-1】(2023春·广西钦州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90度,BC=4,AC=3,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C.3个 D.4个【变式5-2】(2023春·河南南阳·八年级统考期末)如图,△ABC中,∠ABC=72°,∠A=36°,用尺规作图作出射线BD交AC于点D,则图中等腰三角形共有 个. 【变式5-3】(2023春·黑龙江哈尔滨·八年级统考期末)如图1,∠DAB=∠ABC=90°,∠BAC=45°,CE⊥BD.(1)求证:AD=BE;(2)如图2,若点E是AB的中点,连接DE、CD,在不添加其他字母的条件下,写出图中四个等腰三角形.【题型6 根据等角对等边证明等腰三角形】【例6】(2023春·重庆江北·八年级校考期中)如图,在Rt△ACB中,∠ACB=90°,∠CBA与∠CAB的平分线相交于点E,延长AE交BC于点D,过点E作EF⊥AD交AC于F,作EG∥AB交AC于点G.(1)求证:△GEF为等腰三角形;(2)求证:AF+BD=AB.【变式6-1】(2023春·吉林松原·八年级统考期中)如图,∠1+∠2=180°,GP平分∠BGH.(1)求证:△PGH是等腰三角形;(2)若∠1=116°,求∠GPD的度数.【变式6-2】(2023春·广东广州·八年级校考期末)如图,四边形ABCD中,∠DCB+∠CBA=180°,过点D作∠CDE=∠CAB,DE与C交于点D,与AC交于点H.(1)求证:△CHD为等腰三角形;(2)若E为BC中点,猜想AH,HD与EH三者的数量关系.并证明之【变式6-3】(2023春·新疆乌鲁木齐·八年级统考期末)数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【题型7 根据等角对等边证明边相等】【例7】(2023春·江苏扬州·八年级统考期末)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°. (1)求证:AB=BD;(2)设BD与AE交于点F,求证:CE=BF+EF.【变式7-1】(2023春·天津·八年级期中)如图:E在△ABC的AC边的延长线上,AB=AC,D点在AB边上,DE交BC于点F,DF=EF,求证:BD=CE.【变式7-2】(2023春·湖北孝感·八年级统考期末)如图,△ABC中,CA=CB,点D在BC的延长线上,连接AD,AE平分∠CAD交CD于点E,过点E作EF⊥AB,垂足为点F,与AC相交于点G.(1)求证:CG=CE;(2)若∠B=30°,∠CAD=40°,求∠AEF和∠D的度数;(3)求证:∠D=2∠AEF.【变式7-3】(2023春·黑龙江哈尔滨·八年级统考期末)已知:在锐角△ABC中,AD为BC边上的高,∠ABD=2∠CAD.(1)如图1,求证:AB=BC;(2)如图2,点E为AB上一点,且BE=CD,连接DE,∠AED+∠BDE=90°,求证∠ABC=45°;(3)如图3,在(2)的条件下,过B作BF⊥AC于点F,BF交AD于点G,连接CG,若S△CDG=2,求△ABG的面积.【题型8 根据等角对等边求边长】【例8】(2023春·山东聊城·八年级校考期末)如图,AD为△ABC的角平分线.(1)如图 1 ,若CE⊥AD于点 F,交AB于点 E ,AB=8 ,AC=5.求 BE的长.(2)如图 2 ,若∠C=2∠B,点 E 在AB上,且AE=AC,AB=a ,AC=b ,求CD的长;(用含 a 、b 的式子表示)【变式8-1】(2023春·浙江金华·八年级浙江省义乌市稠江中学校联考期中)如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A,B两点望灯塔C,测得∠NAC=35°,∠NBC=70°,则B处到灯塔C的距离为( )A.45海里 B.30海里 C.20海里 D.15海里【变式8-2】(2023春·湖北襄阳·八年级校联考期中)如图,将一张长方形纸片ABCD按图中那样折叠,若AE=5,AB=12,BE=13,则重叠部分(阴影)的面积是 .【变式8-3】(2023春·辽宁盘锦·八年级校考期中)如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=14,△CDB的周长为22,则DB的长为( )A.6 B.7 C.8 D.9【题型9 求与图形中任意两点构成等腰三角形的个数】【例9】(2023春·河北邢台·八年级校考期末)题目:“如图,已知∠AOB=30∘,点M,N在边OA上,OM=x,MN=2,P是射线OB上的点,若使点P,M,N构成等腰三角形的点P恰好有3个,求x的取值范围。”对于其答案,甲答:x=0,乙答:0
相关资料
更多