终身会员
搜索
    上传资料 赚现金

    人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析)

    立即下载
    加入资料篮
    人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析)第1页
    人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析)第2页
    人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析)

    展开

    这是一份人教版七年级数学下册尖子生培优题典 专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)(原卷版+解析),共32页。


    【拔尖特训】2023-2024学年七年级数学下册尖子生培优必刷题【人教版】专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共30小题)1.(2022春•庐阳区校级期中)对于任意实数m、n,定义一种新运算:m*n=m﹣3n+7,等式右边是通常的加减运算,例如:2*3=2﹣3×3+7=0.(1)(8*2)的平方根为    ;(2)若关于x的不等式组3t<2*x<7解集中恰有3个整数解,求t的取值范围.2.(2023春•嘉鱼县期末)定义一种新运算“a△b”:当a≥b时,a△b=a+2b;当a<b时,a△b=a﹣2b.例如:3△(﹣4)=3+2×(﹣4)=﹣5,1△2=1﹣2×2=﹣3.(1)填空:(﹣4)△3=   ;(直接写结果)(2)若(3m﹣4)△(m+6)=(3m﹣4)+2(m+6),求m的取值范围;(3)已知(3x﹣7)△(3﹣2x)<﹣6,求x的取值范围.3.阅读下面材料:对于实数p,q,我们定义符号max{p,q}的意义为:当p≤q时,max{p,q}=q;当p>q时,max{p,q}=p,如:max{2.﹣1}=2;max{3,3}=3.根据上面的材料回答下列问题:(1)max{﹣1,3}=   ;(2)当max{3x−12,2x+13}=2x+13时,求x的取值范围.4.(2020春•朝阳区校级期中)请你根据右框内所给的内容,完成下列各小题.(1)若m⊕n=1,m⊕2n=﹣2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.5.(2022春•如皋市期末)对于任意实数m,n,定义一种新运算:m◎n=m+n﹣5,其中,等式右边是通常的加减运算.如:2◎3=2+3﹣5=0.若关于x的不等式组t<2◎x<7恰有3个整数解,求t的取值范围.6.(2022春•新郑市期末)对于任意实数x,y定义一种新运算“#”:x#y=xy+x﹣y.例如,3#5=3×5+3﹣5=13.(1)解不等式:3#x<4;(2)若m<2#x<9,且该不等式组的解集中恰有两个整数解,请直接写出m的取值范围.7.(2018春•房山区期中)定义:对于任何有理数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣π]=   ;(2)如果[x−12]=﹣5,求满足条件的所有整数x;(3)直接写出方程6x﹣3[x]+7=0的解   .8.(2022春•唐县期末)规定min(m,n)表示m,n中较小的数(m,n均为实数),例如:min{3,﹣1}=﹣1,min{2,2}=2据此解决下列问题:(1)min{﹣2,﹣3}=   ;(2)若min{3x﹣1,2}=2,求x的取值范围;9.(2022春•大观区校级期中)在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a−32(a+b),如1⊕5=2×1−32(1+5)=﹣7.(1)若x⊕4=0,则x=   .(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.10.(2022春•三水区校级期中)定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空;(﹣3)※2=   ;(2x2+2x+2)※(x2﹣4)=   ;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为    .(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围.11.(2018•余姚市模拟)请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.(1)若x⊕y=1,x⊕2y=﹣2,分别求出x和y的值;(2)若x满足x⊕2≤0,且3x⊕(﹣8)>0,求x的取值范围.12.(2022•南京模拟)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3=   .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为    ;(3)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围;(4)计算(2x2+4x+8)*(x2+4x﹣2).13.(2020•张家界)阅读下面的材料:对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{﹣1,3}=   ;(2)当min{2x−32,x+23}=x+23时,求x的取值范围.14.(2023春•罗湖区校级期末)已知关于x、y的方程组x−y=11−mx+y=7−3m.(1)当m=2时,请解关于x、y的方程组x−y=11−mx+y=7−3m;(2)若关于x、y的方程组x−y=11−mx+y=7−3m中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.15.(2020春•海淀区校级期末)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0;②23x+1=0;③x﹣(3x+1)=﹣5中,不等式组−x+2>x−53x−1>−x+2关联方程是   (填序号).(2)若不等式组x−12<11+x>−3x+2的一个关联方程的根是整数,则这个关联方程可以是   (写出一个即可).(3)若方程9﹣x=2x,3+x=2(x+12)都是关于x的不等式组x<2x−mx−2≤m的关联方程,试求出m的取值范围.16.(2019春•宜宾期末)定义:对于任何有理数m,符号[m]表示不大于m的最大整数.例如:[4.5]=4,[8]=8,[﹣3.2]=﹣4.(1)填空:[π]=   ,[﹣2.1]+5=   ;(2)如果[5−2x3]=﹣4,求满足条件的x的取值范围;(3)求方程4x﹣3[x]+5=0的整数解.17.(2020春•西城区校级期中)阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x》,即当n为非负整数时,若n−12≤x<n+12,则《x》=n.例如:《0.67》=1,《2.49》=2,….请解决下列问题:(1)《2》=   ;(2)若《2x﹣1》=5,则实数x的取值范围是   ;(3)①《2x》=2《x》;②当m为非负整数时,《m+2x》=m+《2x》;③满足《x》=32x的非负实数x只有两个,其中结论正确的是   .(填序号)18.(2022春•定远县期末)阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3,那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]=   ,[﹣6.5]=   ;(2)如果[x]=5,那么x的取值范围是    ;(3)如果[5x﹣2]=3x+1,那么x的值是    ;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.19.(2023春•镇江期末)对非负实数x“四舍五入”到个位的值记为<x>.即当n为非负整数时,若n−12≤x<n+12,则<x>=n.如:<3.2>=3,<3.5>=4,<3.8>=4.根据以上材料,解决下列问题:(1)填空:<3.45>=   ;(2)若<2x+1>=3,求x满足的条件;(3)下面两个命题:①如果x≥0,m为非负整数,那么<x+m>=m+<x>;②如果x≥0,k为非负整数,那么<kx>=k<x>;请判断在这两个命题中属于假命题的是    ,并举反例说明;(4)满足<x>=23x+1的所有非负实数x的值为    .20.(2020春•崇川区校级期末)若x为实数,定义:[x]表示不大于x的最大整数.(1)例如[1.6]=1,[π]=   ,[﹣2.82]=   .(请填空)(2)[x]+1是大于x的最小整数,对于任意的实数x都满足不等式[x]≤x<[x]+1,利用这个不等式,求出满足[x]=2x﹣1的所有解.21.(2018春•开州区期末)设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{﹣2.6}=﹣2,{4}=4,{﹣5}=5.在此规定下任一实数都能写出如下形式:x={x}﹣b,其中0≤b<1.(1)直接写出{x}与x,x+1的大小关系是   (由小到大);(2)根据(1)中的关系式解决下列问题:①求满足{3x+11}=6的x的取值范围;②解方程:{3.5x+2}=2x−14.22.(2022•南京模拟)阅读材料:我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2.完成下列各小题.(1)若a⊕b=1,a⊕2b=﹣5,分别求出a和b的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.23.(2020春•长沙期末)对x、y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F(2,3)=2a+3b.(1)已知F(2,﹣1)=﹣1,F(3,0)=3.①求a,b的值.②已知关于p的不等式组F(3−2p,3)≥4F(2,2−3p)<−1求p的取值范围;(2)若运算F满足−2<F(1,2)≤4−1<F(2,1)≤5,请你求出F(k,k)的取值范围(用含k的代数式表示,这里k为常数且k>0).24.(2023春•朝阳区校级期末)(1)阅读下面的材料并把解答过程补充完整.问题:在关于x,y的二元一次方程组x−y=2x+y=a中,x>1,y<0,求a的取值范围.分析:在关于x、y的二元一次方程组中,利用参数a的代数式表示x,y,然后根据x>1,y<0列出关于参数a的不等式组即可求得a的取值范围.解:由x−y=2x+y=a解得x=a+22y=a−22,又因为x>1,y<0,所以a+22>1a−22<0解得    .(2)请你按照上述方法,完成下列问题:①已知x﹣y=4,且x>3,y<1,求x+y的取值范围;②已知a﹣b=m,在关于x,y的二元一次方程组2x−y=−1x+2y=5a−8中,x<0,y>0,请直接写出a+b的取值范围    (结果用含m的式子表示).25.(2023•椒江区校级开学)对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4=   ;2⊕(2−1)=   .(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.26.(2020春•微山县期末)阅读新知现对x,y进行定义一种运算,规定f(x,y)=mx+ny2(其中m,n为常数且mn≠0),等式的右边就是加、减、乘、除四则运算.例如:f(2,0)=m×2+n×02=m应用新知(1)若f(1,1)=5,f(2,1)=8,求m,n的值;拓展应用(2)已知f(﹣3,0)>﹣3,f(3,0)>−92,且m+n=16,请你求出符合条件的m,n的整数值.27.(2020春•邗江区期末)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3=   .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为   .(3)计算(2x2﹣4x+7)*(x2+2x﹣2)=   .(4)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围.28.(2020•河北模拟)定义新运算:对于任意实数m、n都有m☆n=mn﹣3n.例如4☆2=4×2﹣3×2=8﹣6=2,请根据上述知识解决下列问题:(1)x☆12>4,求x取值范围;(2)若|x☆(−14)|=3,求x的值;(3)若方程x☆□x=6,□中是一个常数,且此方程的一个解为x=1,求□中的常数.29.(2023春•海州区期末)对x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.(1)已知F(1,﹣1)=﹣8,F(1,2)=13.①求m,n的值;②关于a的不等式组F(a,3a+1)>−95F(5a,2−3a)≥340,求a的取值范围;(2)当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,请直接写出m,n满足的关系式.30.(2023春•大连期末)对x,y定义一种新的运算P,规定:P(x,y)=mx+ny,(x≥y)nx+my,(x<y)(其中mn≠0).已知P(2,1)=7,P(﹣1,1)=﹣1.(1)求m、n的值;(2)若a>0,解不等式组P(2a,a−1)<4P(−12a−1,−13a)≤−5. 我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2. 【拔尖特训】2023-2024学年七年级数学下册尖子生培优必刷题【人教版】专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共30小题)1.(2022春•庐阳区校级期中)对于任意实数m、n,定义一种新运算:m*n=m﹣3n+7,等式右边是通常的加减运算,例如:2*3=2﹣3×3+7=0.(1)(8*2)的平方根为  ±3 ;(2)若关于x的不等式组3t<2*x<7解集中恰有3个整数解,求t的取值范围.【分析】(1)原式利用题中的新定义化简,求出平方根即可;(2)已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出t的范围即可.【解答】解:(1)根据题中的新定义得:8*2=8﹣3×2+7=8﹣6+7=9,则9的平方根是±3;故答案为:±3;(2)根据题中的新定义化简得:3t<2﹣3x+7<7,解得:23<x<﹣t+3,∵该不等式的解集有3个整数解,∴该整数解为1,2,3,∴3<﹣t+3≤4,解得:﹣1≤t<0.2.(2023春•嘉鱼县期末)定义一种新运算“a△b”:当a≥b时,a△b=a+2b;当a<b时,a△b=a﹣2b.例如:3△(﹣4)=3+2×(﹣4)=﹣5,1△2=1﹣2×2=﹣3.(1)填空:(﹣4)△3= ﹣10 ;(直接写结果)(2)若(3m﹣4)△(m+6)=(3m﹣4)+2(m+6),求m的取值范围;(3)已知(3x﹣7)△(3﹣2x)<﹣6,求x的取值范围.【分析】(1)根据新定义计算可得;(2)根据新定义结合已知条件知3m﹣4≥m+6,解之可得;(3)由题意可得3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,分别求解可得.【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3m﹣4)△(m+6)=(3m﹣4)+2(m+6),∴3m﹣4≥m+6,解得:m≥5;(3)由题意知,3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,解得:x>5或x<1.3.阅读下面材料:对于实数p,q,我们定义符号max{p,q}的意义为:当p≤q时,max{p,q}=q;当p>q时,max{p,q}=p,如:max{2.﹣1}=2;max{3,3}=3.根据上面的材料回答下列问题:(1)max{﹣1,3}= 3 ;(2)当max{3x−12,2x+13}=2x+13时,求x的取值范围.【分析】(1)根据定义即可求得;(2)根据题意得出3x−12≤2x+13,解不等式即可求得结论.【解答】解:(1)max{﹣1,3}=3,故答案为3;(2)由定义得,3x−12≤2x+13,9x﹣3≤4x+2,5x≤5,x≤1,故的取值范围是x≤1.4.(2020春•朝阳区校级期中)请你根据右框内所给的内容,完成下列各小题.(1)若m⊕n=1,m⊕2n=﹣2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.【分析】(1)根据新定义列出关于m、n的方程组,解之可得;(2)根据新定义列出关于m、n的不等式组,解之可得.【解答】解:(1)根据题意,得:4m−3n=14m−6n=−2,解得:m=1n=1;(2)根据题意,得:4m−6≤012m+24>0,解得:﹣2<m≤32.故m的取值范围是﹣2<m≤32.5.(2022春•如皋市期末)对于任意实数m,n,定义一种新运算:m◎n=m+n﹣5,其中,等式右边是通常的加减运算.如:2◎3=2+3﹣5=0.若关于x的不等式组t<2◎x<7恰有3个整数解,求t的取值范围.【分析】已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出t的范围即可.【解答】解:由题意得:t<2+x﹣5<7.即t<x﹣3<7,∴t+3<x<10,∵该不等式组恰有3个整数解,即整数解x=7,8,9,∴6≤t+3<7,解得3≤t<4.故t的取值范围是3≤t<4.6.(2022春•新郑市期末)对于任意实数x,y定义一种新运算“#”:x#y=xy+x﹣y.例如,3#5=3×5+3﹣5=13.(1)解不等式:3#x<4;(2)若m<2#x<9,且该不等式组的解集中恰有两个整数解,请直接写出m的取值范围.【分析】(1)根据新定义列出不等式3x+3﹣x<4,解之即可;(2)由新定义得出2x+2−x>m①2x+2−x<9②,解之得出x>m﹣2且x<7,结合不等式组的整数解个数得出4≤m﹣2<5,解之即可.【解答】解:(1)∵3#x<4,∴3x+3﹣x<4,解得x<0.5;(2)∵m<2#x<9,∴2x+2−x>m①2x+2−x<9②,解不等式①,得:x>m﹣2,解不等式②,得:x<7,∵不等式组有2个整数解,∴4≤m﹣2<5,∴6≤m<7.7.(2018春•房山区期中)定义:对于任何有理数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣π]= ﹣4 ;(2)如果[x−12]=﹣5,求满足条件的所有整数x;(3)直接写出方程6x﹣3[x]+7=0的解 x=−83或x=−196 .【分析】(1)由定义直接得出即可;(2)根据题意得出﹣5≤x−12<−4,求出x的取值范围,从而得出满足条件的所有正整数的解;(3)整理得出[x]=7+6x3,方程右边式子为整数,表示出x只能为负数,得出x﹣1<7+6x3<x,求出x的取值范围,确定出方程的解即可.【解答】解:(1)由题可得,[﹣π]=﹣4;故答案为:﹣4;(2)﹣5≤x−12<−4,解得﹣9≤x<﹣7整数解为﹣9,﹣8;(3)由6x﹣3[x]+7=0,得[x]=7+6x3,所以7+6x3为整数,则(7+6x)为3的倍数,即x=3n−76(n为整数),又x﹣1<7+6x3<x,解得−206<x<−146;易知n=﹣3时,3n﹣7=﹣16符合要求,n=﹣4时,3n﹣7=﹣19符合要求,所以x=−83或x=−196.故答案为:x=−83或x=−196.8.(2022春•唐县期末)规定min(m,n)表示m,n中较小的数(m,n均为实数),例如:min{3,﹣1}=﹣1,min{2,2}=2据此解决下列问题:(1)min{﹣2,﹣3}= ﹣3 ;(2)若min{3x﹣1,2}=2,求x的取值范围;【分析】(1)根据题中的新定义确定出所求即可;(2)根据题中的新定义得到3x﹣1与2的大小,求出x的范围即可.【解答】解:(1)根据题中的新定义得:min{﹣2,﹣3}=﹣3;故答案为:﹣3;(2)∵min{3x﹣1,2}=2,∴3x﹣1≥2,解得:x≥1.9.(2022春•大观区校级期中)在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a−32(a+b),如1⊕5=2×1−32(1+5)=﹣7.(1)若x⊕4=0,则x= 12 .(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.【分析】(1)根据所给的运算列出关于x的方程,解方程即可.(2)根据所给的运算列出关于x的一元一次方程,解方程后得到关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵a⊕b=2a−32(a+b),∴x⊕4=2x−32(x+4)=12x﹣6,∵x⊕4=0,∴12x﹣6=0,解得x=12,故答案为:12;(2)∵a⊕b=2a−32(a+b),∴x⊕m=2x−32(x+m)=12x−32m,﹣2⊕(x+4)=2×(﹣2)−32(﹣2+x+4)=﹣4+3−32x﹣6=−32x﹣7,∴12x−32m=−32x﹣7,解得x=34m−72,∵关于x的方程(x⊕m)=[﹣2⊕(x+4)]的解为非负数,∴34m−72≥0,∴m≥143,∴m的取值范围为m≥143.10.(2022春•三水区校级期中)定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空;(﹣3)※2= ﹣8 ;(2x2+2x+2)※(x2﹣4)= 5x2+4x ;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为  x≥7 .(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围.【分析】(1)根据新运算公式计算可得;(2)结合新运算公式知3x﹣4≥2x+3,解之可得;(3)分两种情况得到关于x的不等式组,分别求解可得.【解答】解:(1)(﹣3)※2=2×(﹣3)﹣2=﹣8;∵(2x2+2x+2)﹣(x2﹣4)=x2+2x+6=(x+1)2+5>0,∴(2x2+2x+2)※(x2﹣4)=2(2x2+2x+2)+(x2﹣4)=5x2+4x;故答案为:﹣8,5x2+4x;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7,故答案为:x≥7.(3)当2x﹣6≥9﹣3x时,则2(2x﹣6)+(9﹣3x)<7,解得3≤x<10;当2x﹣6<9﹣3x时,则2(2x﹣6)﹣(9﹣3x)<7,解得x<3;综上,x的取值范围为:x<10.11.(2018•余姚市模拟)请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.(1)若x⊕y=1,x⊕2y=﹣2,分别求出x和y的值;(2)若x满足x⊕2≤0,且3x⊕(﹣8)>0,求x的取值范围.【分析】(1)根据定义新运算得到二元一次方程组,再解方程组即可求解;(2)根据定义新运算得到一元一次不等式组,再解不等式组即可求解.【解答】解:(1)根据题意得4x−3y=14x−3×2y=−2,解得x=1y=1;(2)根据题意得4x−3×2≤04×3x−3×(−8)>0,解得﹣2<x≤32.故x的取值范围是﹣2<x≤32.12.(2022•南京模拟)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为  x≥5 ;(3)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围;(4)计算(2x2+4x+8)*(x2+4x﹣2).【分析】(1)根据新定义计算可得;(2)结合新定义知3x﹣4≥x+6,解之可得;(3)由题意可得3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,分别求解可得;(4)先利用作差法判断出2x2+4x+8>x2+4x﹣2,再根据新定义计算(2x2+4x+8)*(x2+4x﹣2)即可求解.【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣8﹣6=﹣10.故答案为:﹣10;(2)∵(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),∴3x﹣4≥x+6,解得:x≥5.故答案为:x≥5;(3)由题意知3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,解得:x>5或x<1.故x的取值范围是x>5或x<1;(4)∵2x2+4x+8﹣(x2+4x﹣2)=2x2+4x+8﹣x2﹣4x+2=x2+10>0;∴2x2+4x+8>x2+4x﹣2,原式=2x2+4x+8+2(x2+4x﹣2)=2x2+4x+8+2x2+8x﹣4=4x2+12x+4.13.(2020•张家界)阅读下面的材料:对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{﹣1,3}= ﹣1 ;(2)当min{2x−32,x+23}=x+23时,求x的取值范围.【分析】(1)比较大小,即可得出答案;(2)根据题意判断出2x−32≥x+23,解不等式即可判断x的取值范围.【解答】解:(1)由题意得min{﹣1,3}=﹣1;故答案为:﹣1;(2)由题意得:2x−32≥x+233(2x﹣3)≥2(x+2)6x﹣9≥2x+44x≥13x≥134,∴x的取值范围为x≥134.14.(2023春•罗湖区校级期末)已知关于x、y的方程组x−y=11−mx+y=7−3m.(1)当m=2时,请解关于x、y的方程组x−y=11−mx+y=7−3m;(2)若关于x、y的方程组x−y=11−mx+y=7−3m中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.【分析】(1)把m=2代入原方程组,再利用加减法解方程组即可;(2)①把m看作常数,解方程组,根据x为非负数、y为负数,列不等式组解出即可;②根据不等式3mx+2x>3m+2的解为x<1,求出m的取值范围,综合①即可解答.【解答】解:(1)把m=2代入方程组x−y=11−mx+y=7−3m中得:x−y=9①x+y=1②,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:x=5y=−4;(2)①x−y=11−m①x+y=7−3m②,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴9−2m≥0−2−m<0,解得:﹣2<m≤92;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<−23,由①得:﹣2<m≤92,∴﹣2<m<−23,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.15.(2020春•海淀区校级期末)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0;②23x+1=0;③x﹣(3x+1)=﹣5中,不等式组−x+2>x−53x−1>−x+2关联方程是 ③ (填序号).(2)若不等式组x−12<11+x>−3x+2的一个关联方程的根是整数,则这个关联方程可以是 2x﹣2=0 (写出一个即可).(3)若方程9﹣x=2x,3+x=2(x+12)都是关于x的不等式组x<2x−mx−2≤m的关联方程,试求出m的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【解答】解:(1)①解方程3x﹣1=0得:x=13,②解方程23x+1=0得:x=−32,③解方程x﹣(3x+1)=﹣5得:x=2,解不等式组−x+2>x−53x−1>−x+2得:34<x<72,所以不等式组−x+2>x−53x−1>−x+2的关联方程是③,故答案为:③;(2)解不等式x−12<1得:x<1.5,解不等式1+x>﹣3x+2得:x>0.25,则不等式组的解集为0.25<x<1.5,∴其整数解为1,则该不等式组的关联方程为2x﹣2=0.故答案为:2x﹣2=0.(3)解方程9﹣x=2x得x=3,解方程3+x=2(x+12)得x=2,解不等式组x<2x−mx−2≤m得m<x≤m+2,∵方程9﹣x=2x,3+x=2(x+12)都是关于x的不等式组x<2x−mx−2≤m的关联方程,∴1≤m<2.16.(2019春•宜宾期末)定义:对于任何有理数m,符号[m]表示不大于m的最大整数.例如:[4.5]=4,[8]=8,[﹣3.2]=﹣4.(1)填空:[π]= 3 ,[﹣2.1]+5= 2 ;(2)如果[5−2x3]=﹣4,求满足条件的x的取值范围;(3)求方程4x﹣3[x]+5=0的整数解.【分析】(1)根据题目所给信息求解;(2)根据题意得出:﹣4≤5−2x3<−3,求出x的取值范围;(3)整理方程得[x]=4x+53,根据定义得出x﹣1<4x+53≤x,解不等式组求得x的取值范围,即可求得整数x为﹣7,﹣6,﹣5,由[x]是整数,则满足4x+53为整数,即可求得x=﹣5.【解答】解:(1)由题意得:[π]=3,[﹣2.1]+5=﹣3+5=2,故答案为3,2;(2)根据题意得:﹣4≤5−2x3<−3,解得:7<x≤172,则满足条件的x的取值范围为7<x≤172;(3)整理得:[x]=4x+53,∴x﹣1<4x+53≤x解得不等式组的解集为:﹣8<x≤﹣5,∴整数x为﹣7,﹣6,﹣5,∵[x]是整数,∴4x+53为整数,∴x=﹣5,∴方程的整数解为x=﹣5.17.(2020春•西城区校级期中)阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x》,即当n为非负整数时,若n−12≤x<n+12,则《x》=n.例如:《0.67》=1,《2.49》=2,….请解决下列问题:(1)《2》= 1 ;(2)若《2x﹣1》=5,则实数x的取值范围是 114≤x<134 ;(3)①《2x》=2《x》;②当m为非负整数时,《m+2x》=m+《2x》;③满足《x》=32x的非负实数x只有两个,其中结论正确的是 ②③ .(填序号)【分析】(1)根据题意判断即可;(2)我们可以根据题意所述利用不等式解答;(3)根据题意可以判断题目中各个结论是否正确,从而可以解答本题.【解答】解:(1)《2》=1.(2)若《2x﹣1》=5,则5−12≤2x﹣1<5+12,解得114≤x<134.(3)《2x》=2《x》,例如当x=0.3时,《2x》=1,2《x》=0,故①错误;当m为非负整数时,不影响“四舍五入”,故《m+2x》=m+《2x》,故②正确;《x》=32x,则32x−12≤x<32x+12,解得﹣1<x≤1,∵32x为非负整数,∴x=0或23,故③正确.故答案为:1;114≤x<134;②③.18.(2022春•定远县期末)阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3,那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]= 4 ,[﹣6.5]= ﹣7 ;(2)如果[x]=5,那么x的取值范围是  5≤x<6 ;(3)如果[5x﹣2]=3x+1,那么x的值是  53 ;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.【分析】(1)根据新定义直接求解;(2)根据[x]表示不超过x的最大整数的定义即可求解;(3)根据[x]表示不超过x的最大整数的定义得:3x+1≤5x﹣2<3x+2,且3x+1是整数,计算可得结论;(4)根据4a=[x]+1,表示a,再根据a的范围建立不等式x值.【解答】解:(1)[4.8]=4,[﹣6.5]=﹣7.故答案为:4,﹣7.(2)如果[x]=5.那么x的取值范围是5≤x<6.故答案为:5≤x<6.(3)如果[5x﹣2]=3x+1,那么3x+1≤5x﹣2<3x+2.解得:32≤x<2,∵3x+1是整数.∴x=53.故答案为:53.(4)∵x=[x]+a,其中0≤a<1,∴[x]=x﹣a,∵4a=[x]+1,∴a=[x]+14.∵0≤a<1,∴0≤[x]+14<1,∴﹣1≤[x]<3,∴[x]=﹣1,0,1,2.当[x]=﹣1时,a=0,x=﹣1;当[x]=0时,a=14,x=14;当[x]=1时,a=12,x=112;当[x]=2时,a=34,x=234;∴x=﹣1或14或112或234.19.(2023春•镇江期末)对非负实数x“四舍五入”到个位的值记为<x>.即当n为非负整数时,若n−12≤x<n+12,则<x>=n.如:<3.2>=3,<3.5>=4,<3.8>=4.根据以上材料,解决下列问题:(1)填空:<3.45>= 3 ;(2)若<2x+1>=3,求x满足的条件;(3)下面两个命题:①如果x≥0,m为非负整数,那么<x+m>=m+<x>;②如果x≥0,k为非负整数,那么<kx>=k<x>;请判断在这两个命题中属于假命题的是  ② ,并举反例说明;(4)满足<x>=23x+1的所有非负实数x的值为  32或3 .【分析】(1)根据定义即可求解;(2)根据定义列出不等式即可求解;(3)通过举反例即可判断;(4)根据定义列出不等式即可求解.【解答】解:(1)∵3−12<3.45<3+12,∴<3.45>=3,故答案为:3;(2)∵<2x+1>=3,∴52≤2x+1<72,解得:34≤x<54;(3)②是假命题;反例为:x=1.4,k=2,<kx>=<2.8>=3,而k<x>=2×<1.4>=2×1=2,<kx>≠k<x>;故答案为:②;(4)设 23x+1=m,m为整数,则x=3m−32,∴[x]=[3m−32]=m,∴m−12≤3m−32<m+12,∴2≤m<4,∵m为整数,∴m=2,或m=3,∴x=32或x=3.20.(2020春•崇川区校级期末)若x为实数,定义:[x]表示不大于x的最大整数.(1)例如[1.6]=1,[π]= 3 ,[﹣2.82]= ﹣3 .(请填空)(2)[x]+1是大于x的最小整数,对于任意的实数x都满足不等式[x]≤x<[x]+1,利用这个不等式,求出满足[x]=2x﹣1的所有解.【分析】(1)根据[x]表示不大于x的最大整数即可求解;(2)根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:(1)[π]=3,[﹣2.82]=﹣3.故答案为:3,﹣3.(2)∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,21.(2018春•开州区期末)设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{﹣2.6}=﹣2,{4}=4,{﹣5}=5.在此规定下任一实数都能写出如下形式:x={x}﹣b,其中0≤b<1.(1)直接写出{x}与x,x+1的大小关系是 x≤{x}<x+1 (由小到大);(2)根据(1)中的关系式解决下列问题:①求满足{3x+11}=6的x的取值范围;②解方程:{3.5x+2}=2x−14.【分析】(1)x={x}﹣b,其中0≤b<1,b={x}﹣x,即0≤{x}﹣x<1,即可判断三者的大小关系,(2)根据(1)中的关系得到关于x的一元一次不等式组,解之即可,②根据(1)中的关系得到关于x的一元一次不等式组,且2x−14为整数,即可求解.【解答】解:(1)∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,即0≤{x}﹣x<1,∴x≤{x}<x+1,故答案为:x≤{x}<x+1,(2)①∵{3x+11}=6,∴3x+11≤6<(3x+11)+1,解得:﹣2<x≤−53,即满足{3x+11}=6的x的取值范围为:﹣2<x≤−53,②∵{3.5x+2}=2x−14,∴3.5x+2≤2x−14<(3.5x+2)+1,且2x−14为整数,解不等式组得:−136<x≤−32,∴−5512<2x−14≤−314,整数2x−14为﹣4,解得:x=−158,即原方程的解为:x=−158.22.(2022•南京模拟)阅读材料:我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2.完成下列各小题.(1)若a⊕b=1,a⊕2b=﹣5,分别求出a和b的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.【分析】(1)根据新运算,得到方程组,解方程组即可求解;(2)根据新运算,得到不等式组,解不等式组即可.【解答】解:(1)根据题意,得4a−3b=14a−3×2b=−5,解得:a=74b=2,∴a和b的值分别为a=74,b=2;(2)根据题意,得4m−3×2≤04×3m−3×(−8)>0,解得:−2<m≤32.∴m的取值范围−2<m≤32.23.(2020春•长沙期末)对x、y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F(2,3)=2a+3b.(1)已知F(2,﹣1)=﹣1,F(3,0)=3.①求a,b的值.②已知关于p的不等式组F(3−2p,3)≥4F(2,2−3p)<−1求p的取值范围;(2)若运算F满足−2<F(1,2)≤4−1<F(2,1)≤5,请你求出F(k,k)的取值范围(用含k的代数式表示,这里k为常数且k>0).【分析】(1)①根据F(2,﹣1)=﹣1,F(3,0)=3列出关于a、b的方程组,解之可得;②由F(3−2p,3)≥4F(2,2−3p)<−1列出关于p的不等式组,解之可得;(2)根据−2<F(1,2)≤4−1<F(2,1)≤5列出关于a、b的不等式组,相加得出a+b的取值范围,再进一步求解可得.【解答】解:(1)①由题意知2a−b=−13a=3,解得a=1b=3;②由题意知3−2p+9≥42+6−9p<−1,解得1<p≤4;(2)由题意知−2<a+2b≤4−1<2a+b≤5,∴﹣3<3a+3b≤9,∴﹣1<a+b≤3,∵F(k,k)=ka+kb,且﹣k<k(a+b)≤3k,∴﹣k<F(k,k)≤3k.24.(2023春•朝阳区校级期末)(1)阅读下面的材料并把解答过程补充完整.问题:在关于x,y的二元一次方程组x−y=2x+y=a中,x>1,y<0,求a的取值范围.分析:在关于x、y的二元一次方程组中,利用参数a的代数式表示x,y,然后根据x>1,y<0列出关于参数a的不等式组即可求得a的取值范围.解:由x−y=2x+y=a解得x=a+22y=a−22,又因为x>1,y<0,所以a+22>1a−22<0解得  0<a<2 .(2)请你按照上述方法,完成下列问题:①已知x﹣y=4,且x>3,y<1,求x+y的取值范围;②已知a﹣b=m,在关于x,y的二元一次方程组2x−y=−1x+2y=5a−8中,x<0,y>0,请直接写出a+b的取值范围  3﹣m<a+b<4﹣m (结果用含m的式子表示).【分析】(1)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可;(2)①根据(1)阅读中的方法解题即可求解;②解方程组2x−y=−1x+2y=5a−8得:x=a−2y=2a−3,根据x<0,y>0可得1.5<a<2,进一步得到a+b的取值范围.【解答】解:(1)a+22>1①a−22<0②,∵解不等式①得:a>0,解不等式②得:a<2,∴不等式组的解集为0<a<2,故答案为:0<a<2;(2)①设x+y=a,则x−y=4x+y=a,解得:x=a+42y=a−42,∵x>3,y<1,∴a+42>3a−42<1,解得:2<a<6,即2<x+y<6;②解方程组2x−y=−1x+2y=5a−8得:x=a−2y=2a−3,∵x<0,y>0,∴a−2<02a−3>0,解得:1.5<a<2,∵a﹣b=m,∴b=a﹣m,a+b=a+a﹣m,∵1.5<a<2,∴3﹣m<a+a﹣m<4﹣m,∴3﹣m<a+b<4﹣m.故答案为:3﹣m<a+b<4﹣m.25.(2023•椒江区校级开学)对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4= 2 ;2⊕(2−1)= ﹣22+10 .(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.【分析】(1)原式利用题中的新定义化简,计算即可求出值;(2)已知等式利用题中的新定义化简,计算求出x与y的值,计算出xy的值,求出平方根即可;(3)已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出m的范围即可.【解答】解:(1)根据题中的新定义得:7⊕4=7﹣3×4+7=2;2⊕(2−1)=2−3(2−1)+7=2−32+3+7=﹣22+10;故答案为:2;﹣22+10;(2)∵2x⊕y=12,x⊕3=2y,∴2x−3y+7=12x−9+7=2y,解得:x=4y=1,则xy=4,4的平方根是±2;(3)由题意得:2−3x+7<7①2−3x+7>3m②,由①得:x>23,由②得:x<3﹣m,∴不等式组的解集为23<x<3﹣m,∵该不等式组有3个整数解,整数解为1,2,3,∴3<3﹣m≤4,解得:﹣1≤m<0.26.(2020春•微山县期末)阅读新知现对x,y进行定义一种运算,规定f(x,y)=mx+ny2(其中m,n为常数且mn≠0),等式的右边就是加、减、乘、除四则运算.例如:f(2,0)=m×2+n×02=m应用新知(1)若f(1,1)=5,f(2,1)=8,求m,n的值;拓展应用(2)已知f(﹣3,0)>﹣3,f(3,0)>−92,且m+n=16,请你求出符合条件的m,n的整数值.【分析】(1)根据题中的新定义列出关于m与n的方程组,求出方程组的解即可得到a与b的值;(2)根据题中的新定义列出不等式组,求得不等式组的解,根据m+n=16确定出m、n的整数值.【解答】解:(1)根据题中的新定义得:m+n2=52m+n2=8,解得:m=6n=4;(2)根据题中的新定义得:−3m+02>−33m+02>−92,解得:﹣3<m<2,∵m、n是整数,且m+n=16,∴m=−2n=18或m=−1n=17或m=1n=15.27.(2020春•邗江区期末)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为 x≥5 .(3)计算(2x2﹣4x+7)*(x2+2x﹣2)= 4x2+3 .(4)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围.【分析】(1)根据公式计算可得;(2)结合公式知3x﹣4≥x+6,解之可得;(3)先利用作差法判断出2x2﹣4x+7>x2+2x﹣2,再根据公式计算(2x2﹣4x+7)*(x2+2x﹣2)即可得;(4)由题意可得3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,分别求解可得;【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),∴3x﹣4≥x+6,解得:x≥5,故答案为:x≥5.(3)∵2x2﹣4x+7﹣(x2+2x﹣2)=x2﹣6x+9=(x﹣3)2≥0;∴2x2﹣4x+7≥x2+2x﹣2,原式=2x2﹣4x+7+2(x2+2x﹣2)=2x2﹣4x+7+2x2+4x﹣4=4x2+3;(4)由题意知3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,解得:x>5或x<1;28.(2020•河北模拟)定义新运算:对于任意实数m、n都有m☆n=mn﹣3n.例如4☆2=4×2﹣3×2=8﹣6=2,请根据上述知识解决下列问题:(1)x☆12>4,求x取值范围;(2)若|x☆(−14)|=3,求x的值;(3)若方程x☆□x=6,□中是一个常数,且此方程的一个解为x=1,求□中的常数.【分析】(1)根据已知公式得出12x−32>4,解之可得答案;(2)根据公式得出|−14x+34|=3,即可得出−14x+34=3或−14x+34=−3,解之可得答案;(3)根据公式得到□x2﹣3•□x=6,把x=1代入得到□﹣3□=6,即可求得□=﹣3.【解答】解:(1)∵x☆12>4,∴12x−32>4,解得:x>11;(2)∵|x☆(−14)|=3,∴|−14x+34|=3,∴−14x+34=3或−14x+34=−3,解得:x=﹣9或x=15;(3)∵方程x☆□x=6,∴□x2﹣3•□x=6,∵方程的一个解为x=1,∴□﹣3□=6,∴□=﹣3.29.(2023春•海州区期末)对x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.(1)已知F(1,﹣1)=﹣8,F(1,2)=13.①求m,n的值;②关于a的不等式组F(a,3a+1)>−95F(5a,2−3a)≥340,求a的取值范围;(2)当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,请直接写出m,n满足的关系式.【分析】(1)①根据定义的新运算F,将F(1,﹣1)=﹣8,F(1,2)=13代入F(x,y)=(mx+ny)(3x﹣y),得到关于m、n的二元一次方程组,求解即可;②根据题中新定义化简已知不等式组,再求出不等式组的解集即可;(2)由F(x,y)=F(y,x)列出关系式,整理后即可确定出m与n的关系式.【解答】解:(1)①根据题意得:F(1,﹣1)=(m﹣n)(3×1+1)=﹣8,即m﹣n=﹣2;F(1,2)=(m+2n)(3×1﹣2)=13,即m+2n=13,解得:m=3,n=5;②根据题意得:F(x,y)=(3x+5y)(3x﹣y),F(a,3a+1)=(3a+15a+5)(3a﹣3a﹣1)=﹣18a﹣5,F(5a,2﹣3a)=(15a+10﹣15a)(15a﹣2+3a)=180a﹣20.由−18a−5>−95①180a−20≥340②,解不等式①得:a<5,解不等式②得:a≥2,故原不等式组的解集为2≤a<5;(2)由F(x,y)=F(y,x),得(mx+ny)(3x﹣y)=(my+nx)(3y﹣x),整理得:(x2﹣y2)(3m+n)=0,∵当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,∴3m+n=0,即n=﹣3m.30.(2023春•大连期末)对x,y定义一种新的运算P,规定:P(x,y)=mx+ny,(x≥y)nx+my,(x<y)(其中mn≠0).已知P(2,1)=7,P(﹣1,1)=﹣1.(1)求m、n的值;(2)若a>0,解不等式组P(2a,a−1)<4P(−12a−1,−13a)≤−5.【分析】(1)先根据规定的新运算列出关于m、n的方程组,再解之即可;(2)由a>0得出2a>a﹣1,−12a﹣1<−13a,根据新定义列出关于a的不等式组,解之即可.【解答】解:(1)由题意,得:2m+n=7−n+m=−1,解得m=2n=3;(2)∵a>0,∴2a>a,∴2a>a﹣1,−12a<−13a,∴−12a﹣1<−13a,∴2×2a+3(a−1)<4①3(−12a−1)+2×(−13a)≤−5②,解不等式①,得:a<1,解不等式②,得:a≥1213,∴不等式组的解集为1213≤a<1. 我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map