![第23章 图形的相似 华师大版九年级数学上册单元测试(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/14895629/0-1697124077448/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第23章 图形的相似 华师大版九年级数学上册单元测试(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/14895629/0-1697124077459/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第23章 图形的相似 华师大版九年级数学上册单元测试(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/14895629/0-1697124077471/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第23章 图形的相似 华师大版九年级数学上册单元测试(含解析)
展开
这是一份第23章 图形的相似 华师大版九年级数学上册单元测试(含解析),共21页。
华师大版九年级数学上册单元测试第23章图形的相似一、选择题(每题3分,共24分)1.已知三条线段的长分别为3,4,6,则下列线段中不能与它们组成比例线段的是 ( )A.2 B.4.5 C.5 D.82.若,,则的值为 ( )A.1 B.2 C.3 D.43.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若DE=2EF,AC=6,则AB的长为 ( )A.2 B.3 C.4 D.54.如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DEAB),那么小管口径DE的长度是 ( )A.5毫米 B.毫米 C.毫米 D.2毫米5.如图,已知点G是△ABC的重心,分别延长线段BG、CG,交边AC、AB于点E,D.若BE=15,则BG的长是 ( )A.5 B.7.5 C.9 D.106.如图,在平行四边形ABCD中,AE=6,EF=3,BG⊥AE,垂足为G,若BG=8,则△EFC的面积是 ( )A.12 B.6 C.8 D.107.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,,,,,设,,的面积依次为,,.若,则的值为 ( )A.6 B.8 C.10 D.128.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC折叠,使点B落在D点的位置,且交y轴交于点E,则点D的坐标是 ( )A. B. C. D. 二、填空题(每题3分,共24分)9.若2a-3b=0,则___________.10.已知,,,则的周长之比为____.11.若a=4cm,b=9cm,则线段a,b的比例中项是______cm.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它的对应点N的坐标是________.13.如图,已知=,AD=6 cm,DB=4 cm,EC=4 cm,则AC=______ cm.14.如图,在ABCD中,CD=10,F是AB边上一点,DF交AC于点E,且,则___________.15.如图,,若 AC 8 , BD 12 ,则 EF ___________.16.现有不等臂跷跷板AB,当AB的一端点A碰到地面时(如图(1)),另一端点B到地面距离为3米;当AB的另一端点B碰到地面时(如图(2)),端点A到地面距离为2米,那么跷晓板AB的支撑点O到地面的距离OH=_____米. 三、解答题(每题8分,共72分)17.如图,在△ABC中,点D是AB上一点,且AD=1,AB=3,.求证:△ACD∽△ABC.18.如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.19.如图,E是矩形ABCD的边CB的中点,AF⊥DE于点F,AB=4,AD=6.求点A到直线DE的距离.20.如图,在四边形ABCD中,AD=BC,P是BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.21.如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与树顶点在同一直线上.已知纸板的两条边,,测得边离地面的高度,,求树高.22.已知矩形ABCD的一条边AD=4,将矩形ABCD折叠,使得顶点B落在边上的P点处.(1)如图,已知折痕与边BC交于点O,连接AP、OP、OA.求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AB的长;23.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE.(1)求证:CH=BE;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,求的值.24.在△ABC中,AC>BC,D为AB的中点,E为线段AC上的一点.(1)如图1,若AE=AC,∠C=90°,BC=2,AC=4,求DE的长;(2)如图2,若AE=BC且F为EC中点,求证:∠AFD=∠C;(3)若2∠AED-∠C=180°,试探究AE、BC、AC的数量关系,并证明.25.已知在Rt△ABC中,∠BAC=90°,AB=2,AC=6,D为BC边上的一点.过点D作射线DE⊥DF,分别交边AB,AC于点E,F.(1)当D为BC的中点,且DE⊥AB,DF⊥AC时,如图①,______.(2)①若D为BC的中点,将∠EDF绕点D旋转到图②位置时,______.②若改变点D的位置,且时,求的值,请就图③的情形写出解答过程.(3)如图③连接EF,当BD=______时,△DEF与△ABC相似.
参考答案:1.解:A、∵2×6=3×4,∴四条线段能组成比例线段,故选项不符合题意;B、∵3×6=4×4.5,∴四条线段能组成比例线段,故选项不符合题意;C、∵3×6≠4×5,∴四条线段不能组成比例线段,故选项符合题意;D、∵3×8=4×6,∴四条线段能组成比例线段,故选项不符合题意.故选:C.2.解:设,则,,,,即,,,故选:D.3.解:∵abc,∴=,∵DE=2EF,AC=6,∴=2,解得:AB=4,故选:C.4.∵DEAB,∴△CDE∽△CAB,∴,即,解得:DE=,故选B.5.解:∵点G是△ABC的重心,∴BG=2GE,∵BE=BG+GE=15,∴BG=10,故选:D.6.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F=∠BAE,∵∠FEC=∠AEB,∴△EFC∽△EAB,∴;∵BG⊥AE,BG=8,∴,∴,故选:B.7.解:∵矩形ABCD是由三个全等矩形拼成,∴,∴∠AED=∠EGF=∠GBH,∴∠DEF=∠FGH=∠HBC,∵FEHGBC,∴∠AQE=∠AMG=∠ACB,∴△EPQ∽△GKM∽△BNC,∵QEMG,∴△AEQ∽△AGM,∴∵MGCB,∴△AGM∽△ABC,∴则∵∴∴,故选D.8.解:如图,过D作DF⊥AO于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴,∴OE=DE,OA=CD=1,设OE=m,那么CE=3-m,DE=m,∴在Rt△DCE中,,∴,解得,∵DF⊥AF,∴,∴,而AD=AB=3,∴,∴,即,∴,∴,∴D的坐标为.故选:D.9.解:∵2a-3b=0,∴2a=3b,即,∴.故答案为:310.解:∵,,,∴;故答案为:4∶3.11.解:设线段a,b的比例中项是xcm,∵a=4cm,b=9cm,∴,∴x=6cm.故答案为:612.解:观察图形可知C(1,2)、P(﹣4,﹣3)、Q(﹣3,﹣1)、A(4,3)、B(3,1)、R(﹣1,﹣2),∴C、R关于原点对称,A、P关于原点对称,B、Q关于原点对称,∴△PQR和△ABC关于原点对称.∵△PQR和△ABC关于原点对称, M(x,y)与N对称点,∴N点坐标为:(﹣x,﹣y).故答案为:(﹣x,﹣y).13.解:∵=,且AD=6 cm,DB=4 cm,EC=4 cm,∴=,∴AE=6cm,∴AC=AE+EC=6+4=10cm,故答案为:10.14.解:如图所示,平行四边形,过点作交于点,交于点,,,∴,∴,,,∴,∴, ∴,,∴,则,∵,,∴,∴,故答案是:.15.解:∵,∴△BEF∽△BCA,∴,∵,∴△AEF∽△ADB,∴,∴,即,∴,∵AC 8 , BD 12 ,∴,解得:.故答案为:16.解:如图所示:过点B作BN⊥AH于点N,AM⊥BH于点M,∴,∴,,∴△AOH∽△ABN,∴,即①,同理可得:△BOH∽△BAM,∴,即②,①+②,得,∴OH=1.2(米),故答案为:1.2.17.证明:AD=1,AB=3,AC=, 又 ∽18.解:∵△ADE∽△ABC,∴,∵DE=8,BC=24,CD=18,AD=6,∴AC=AD+CD=24,∴AE=8,AB=18,∴BE=AB-AE=10.19.解:∵四边形ABCD是矩形,∴AD=BC=6,CD=AB=4,∠ADC=∠C=90°,∵点E为BC的中点,∴CE=3,由勾股定理得,,∵AF⊥DE,∴∠AFD=90°,∴∠ADF+∠DAF=∠ADF+∠CDE=90°,∴∠DAF=∠CDE,∵∠DFA=∠C,∴,∴,∴,∴AF=,即点A到直线DE的距离为.20.解:△PMN是等腰三角形,理由如下:∵P是BD的中点,M是DC的中点,∴PM是△DBC的中位线,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.21.解:在中, ,,由勾股定理得:,∴,根据题意得:∠BCD=∠DEF=90°,∠D=∠D,∴,∴,∵,,∴,解得:,∵,∴.22. (1)∵四边形ABCD是矩形,∴.由折叠的性质可知,∴,∴,∴,∴△PDA∽△OCP;(2)∵,△PDA∽△OCP,∴,即,∴.设,则,由折叠可知,∵,∴,解得:,∴,∴,∴,∴.23. (1)解:∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS),∴CH=BE;(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DHBC,∴,∴GC=2GH,设GH=x,则CG=2x,∴3x=8,∴x=.即GH=;(3)解:当的值为时,则,∵DH=CE,DC=BC,,∵DHBC,,,设S△DGH=9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG:S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.24. (1)证明:取AC的中点G,连接DG,(如图1)∵D为AB的中点,∴DG为△ACB的中位线,∴DG=BC=1,DGBC,∵∠C=90°,∴DG⊥BC,∵AE=AC,AC=4,∴AE=1,在Rt△DGE中,DE=;(2)证明:连接BE,取BE中点M,再连接MF、MD.(如图2)∵F为EC中点,D为AB中点,∴MFBC且MF=BC,MDAB且MD=AE,∴MF=MD,∴∠MDF=∠MFD,又∵MDAE, ∴∠AFD=∠MDF,∴∠AFD=∠AFM,∵MFAC,∴∠AFM=∠ACB,∴∠AFD=∠ACB, 即:∠AFD=∠C;(3)解:AC=2AE+BC,(如图3)证明:在EC上截取EM=AE,连接BM,作CH⊥BM,∵AE=EM,AD=DB,∴DEBM,∴∠AED=∠AMB=∠MHC+∠MCH=90°+∠MCH,∵2∠AED-∠ACB =180°,∴∠AED=90°+∠ACB,∴∠MCH=∠ACB,∴∠ACB =2∠MCH,∴△CHM≌△CHB,∴BC=MC,∴AC=2AE+BC.25. (1)解:,,,,,点是的中点,、是的中位线,,,,故答案为:3;(2)①过点作于点,于点,如图2所示:则,四边形是矩形,,即,,,即,,,,同(1)得:,,故答案为:3;②过点作于点,于点,如图3所示:,四边形是矩形,,,,,,,,,,,,,,,,与①同理得:,;(3)如图所示:在中,由勾股定理得:,,与相似分两种情况:①,则,即,整理得:,,;②,则,即,整理得:,,;综上所述,当或时,与相似;故答案为:或.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)