还剩35页未读,
继续阅读
第六章一次函数总复习课件-(苏科版)
展开
这是一份第六章一次函数总复习课件-(苏科版),共43页。
苏科版八年级数学上册第六章一次函数总复习1.下列各点中,在函数y = 2x – 7的图象上的是 A.(2,3 ) B.(3,1) C. (0,– 7) D. (– 1,-5)2.若一次函数y=2x+1的图象经过点(1,a),则a的值为 .3.若直线y=(m+3)x+m-4经过原点,则m的值为 .第十四章《一次函数》(一)能根据函数解析式与图象的关系,判断点是否在函数图象上,求图象上点的坐标,会求图象与坐标轴交点坐标,求解析式中待定字母的值。4. 如图,一次函数y=(m-3)x-2m+4的图象经过点(1,-2).(1)求m的值;(2)判断点(2,-3)是否在图象上,并说明理由.(3)若图象经过点(-1,a),求a的值.(4)若图象与x轴、y轴分别交于A、B两点,求A、B的坐标.第十四章《一次函数》(二)知道k、b与一次函数图象、性质的关系;会利用一次函数图象与性质分析、解决问题.第十四章《一次函数》注意数形结合3.已知一次函数y=(m-3)x+m-1(1)若此函数图象经过第一、二、三象限,求m的取值范围;(2)当m为何值时,y随x的增大而减小?(3)若函数图象与y轴交点的纵坐标为-2,且图象经过点 ,若 ,请你判断 的大小关系,并说明理由.第十四章《一次函数》4.由直线y=2x-1得到直线y=2x+3,需做的平移是A.向上平移3个单位 B.向下平移3个单位C.向上平移4个单位 D.向下平移4个单位第十四章《一次函数》知道直线上下平移的一般性规律5.对于三个数a、b、c,用 表示这三个数中最小的数,例如 , 那么观察图象,可得到 的最大值为 .第十四章《一次函数》2.观察大小关系发生变化的关键点-图象交点(由相等变不等)3.对图象分区,分情况确定最小值的最大值.1. 阅读范例,理解新符号含义.(三)能根据条件,求一次函数解析式.2.一次函数y=kx+b的图象平行于直线y=-2x+1,且与y轴交于点(0,-3),则所一次函数的解析式为 .第十四章《一次函数》 当已知函数解析式形式的条件下,求函数解析式的实质是求待定系数的值.第十四章《一次函数》3.已知一次函数的图象过点(3,5)与点(-4,-9),求这个一次函数的解析式. 当函数解析式形式的未知时,可根据函数类型,设函数解析式的一般形式,再求待定系数的值.一般可借助图象上的点坐标,建立关于待定系数中字母的方程或方程组求解。第十四章《一次函数》4.若直线y=kx+6与两坐标轴所围成的三角形面积是24,求直线解析式. A\第十四章《一次函数》(四)会利用一次函数与方程(组)、不等式的关系,数形结合的发现方程(组)的解、不等式的解集.第十四章《一次函数》2.如图,一次函数y=kx+b与一次函数y=mx+n的图象相交于点(3,1).(1)方程组 的解是 .(2)当x取何值时,数的方面---方程(组)、不等式与函数间的转化形的方面---以交点为零界点,分区域直观分析.第十四章《一次函数》(五)能从函数图象中获取信息,解决有关实际问题;会根据实际问题中变量的变化关系,推断函数图象的基本特征;会用函数表示实际问题中变量的关系,并能解决简单实际问题。第十四章《一次函数》1.王鹏和李明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏骑自行车,李明步行.当王鹏从原路回到学校时,李明刚好到达图书馆.图中折线 和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)王鹏在图书馆查阅资料的时间为 分钟,王鹏返回学校的速度为 千米/分钟;(2)请求出李明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系式;(3)当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?1.明确横轴、纵轴表示的意义2.明确每个运动阶段对应的是哪段图象.3.明确特殊点(比如交点)的含义.第十四章《一次函数》ABCD2.骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是 根据实际问题中变量的变化关系,推断函数图象的变化趋势.第十四章《一次函数》3.某工厂负责加工A型零件,乙负责加工B型零件。已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/ 件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工的零件所获得的总利润(元)与m(元/件)的函数关系式,并求总利润的最大值、最小值.利用函数与自变量的等量关系列出函数关系式(六)能解决与其他知识结合的较综合问题.第十四章《一次函数》1.如图,直线y=2x+3与x轴交于点A,与y轴交于点B. (1) 求A,B两点的坐标;(2) 过点B作直线BP与x轴交于点P,且使OP=2OA, 求△ABP的面积.2.如图,在平面直角坐标系xoy中,直线l1: 与l2: 交于点C,分别交x轴交于点A,B.(1)求点A,B,C的坐标;(2)求△ABC的面积;(3)在直线l1上是否存在点P,使△PBA是等腰直角三角形,若存在,求出点P的坐标;若不存在,说明理由.第十四章《一次函数》D第十四章《一次函数》D设P2(x,-x+3)一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;返回引入二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。例如不能取负数,不能取小数等四. 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.下面的2个图形中,哪个图象中y是关于x的函数.1、列表(表中给出一些自变量的值及其对应的函数值。) 2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。 五、用描点法画函数的图象的一般步骤:注意:列表时自变量由小到大,相差一样,有时需对称。六、函数有三种表示形式:七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。七.正比例函数的图象与性质:八、一次函数与正比例函数的图象与性质y随x的增大而增大y随x的增大而增大y随x的增大而减少y随x的增大而减少一、二、三一、三、四一、二、四二、三、四1、图象是经过(0,0)与(1,k)的一条直线2、当k>0时,图象过一、三象限;y随x的增大而增大。 当k<0时,图象过二、四象限;y随x的增大而减少。k>0b>0k>0b<0k<0b>0k<0b<0九.怎样画一次函数y=kx+b的图象?1、两点法 y=x+12、平移法先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法十、求函数解析式的方法:11.一次函数与一元一次方程: 求ax+b=0(a,b是 常数,a≠0)的解. x为何值时 函数y= ax+b的值 为0. 从“数”的角度看求ax+b=0(a, b是 常数,a≠0)的解. 求直线y= ax+b 与 x 轴交点的横 坐标. 从“形”的角度看12.一次函数与一元一次不等式: 解不等式ax+b>0(a,b是常数,a≠0) . x为何值时 函数y= ax+b的值 大于0. 从“数”的角度看解不等式ax+b>0(a,b是常数,a≠0) . 求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 从“形”的角度看13.一次函数与二元一次方程组:解方程组自变量(x)为何值时两个函数的值相等.并求出这个函数值 从“数”的角度看解方程组确定两直线交点的坐标.从“形”的角度看应用新知例1 (1)若y=5x3m-2是正比例函数,m= 。1-21、直线y=kx+b经过一、二、四象限,则K 0, b 0.<>此时,直线y=bx+k的图象只能是( ) D练习: 2、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?-2-2练习:向下平移两个单位3.若一次函数y=x+b的图象过点A(1,-1),则b=__________。 -24.根据如图所示的条件,求直线的表达式。 练习: 5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式.解:(1)设所求函数关系式为:Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得解得解析式为:Q=-5t+40 (0≤t≤8)练习:(2)、取t=0,得Q=40;取t=8,得Q=0。描出点A(0,40),B(8,0)。然后连成线段AB即是所求的图形。注意:(1)求出函数关系式时,必须找出自变量的取值范围。 (2)画函数图象时,应根据函数自变量的取值范围来确定图象的范围。图象是包括两端点的线段 5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式.(2)画出这个函数的图象。Q=-5t+40 (0≤t≤8)6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱。(2)服药5时,血液中含药量为每毫升____毫克。263练习:6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(3)当x≤2时y与x之间的函数关系式是___________。(4)当x≥2时y与x之间的函数关系式是___________。(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是___时。y=3xy=-x+84作业:小聪上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小聪离家的路程s(km)和所经过的时间t(分)之间的函数关系如图所示,请根据图象回答下列问题:(1)小聪去超市途中的速度是多少?回家途中的速度是多少?(2)小聪在超市逗留了多少时间?(3)用恰当的方式表示路程s与时间t之间的关系。(4)小聪在来去途中,离家1km处的时间是几时几分?
苏科版八年级数学上册第六章一次函数总复习1.下列各点中,在函数y = 2x – 7的图象上的是 A.(2,3 ) B.(3,1) C. (0,– 7) D. (– 1,-5)2.若一次函数y=2x+1的图象经过点(1,a),则a的值为 .3.若直线y=(m+3)x+m-4经过原点,则m的值为 .第十四章《一次函数》(一)能根据函数解析式与图象的关系,判断点是否在函数图象上,求图象上点的坐标,会求图象与坐标轴交点坐标,求解析式中待定字母的值。4. 如图,一次函数y=(m-3)x-2m+4的图象经过点(1,-2).(1)求m的值;(2)判断点(2,-3)是否在图象上,并说明理由.(3)若图象经过点(-1,a),求a的值.(4)若图象与x轴、y轴分别交于A、B两点,求A、B的坐标.第十四章《一次函数》(二)知道k、b与一次函数图象、性质的关系;会利用一次函数图象与性质分析、解决问题.第十四章《一次函数》注意数形结合3.已知一次函数y=(m-3)x+m-1(1)若此函数图象经过第一、二、三象限,求m的取值范围;(2)当m为何值时,y随x的增大而减小?(3)若函数图象与y轴交点的纵坐标为-2,且图象经过点 ,若 ,请你判断 的大小关系,并说明理由.第十四章《一次函数》4.由直线y=2x-1得到直线y=2x+3,需做的平移是A.向上平移3个单位 B.向下平移3个单位C.向上平移4个单位 D.向下平移4个单位第十四章《一次函数》知道直线上下平移的一般性规律5.对于三个数a、b、c,用 表示这三个数中最小的数,例如 , 那么观察图象,可得到 的最大值为 .第十四章《一次函数》2.观察大小关系发生变化的关键点-图象交点(由相等变不等)3.对图象分区,分情况确定最小值的最大值.1. 阅读范例,理解新符号含义.(三)能根据条件,求一次函数解析式.2.一次函数y=kx+b的图象平行于直线y=-2x+1,且与y轴交于点(0,-3),则所一次函数的解析式为 .第十四章《一次函数》 当已知函数解析式形式的条件下,求函数解析式的实质是求待定系数的值.第十四章《一次函数》3.已知一次函数的图象过点(3,5)与点(-4,-9),求这个一次函数的解析式. 当函数解析式形式的未知时,可根据函数类型,设函数解析式的一般形式,再求待定系数的值.一般可借助图象上的点坐标,建立关于待定系数中字母的方程或方程组求解。第十四章《一次函数》4.若直线y=kx+6与两坐标轴所围成的三角形面积是24,求直线解析式. A\第十四章《一次函数》(四)会利用一次函数与方程(组)、不等式的关系,数形结合的发现方程(组)的解、不等式的解集.第十四章《一次函数》2.如图,一次函数y=kx+b与一次函数y=mx+n的图象相交于点(3,1).(1)方程组 的解是 .(2)当x取何值时,数的方面---方程(组)、不等式与函数间的转化形的方面---以交点为零界点,分区域直观分析.第十四章《一次函数》(五)能从函数图象中获取信息,解决有关实际问题;会根据实际问题中变量的变化关系,推断函数图象的基本特征;会用函数表示实际问题中变量的关系,并能解决简单实际问题。第十四章《一次函数》1.王鹏和李明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏骑自行车,李明步行.当王鹏从原路回到学校时,李明刚好到达图书馆.图中折线 和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)王鹏在图书馆查阅资料的时间为 分钟,王鹏返回学校的速度为 千米/分钟;(2)请求出李明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系式;(3)当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?1.明确横轴、纵轴表示的意义2.明确每个运动阶段对应的是哪段图象.3.明确特殊点(比如交点)的含义.第十四章《一次函数》ABCD2.骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是 根据实际问题中变量的变化关系,推断函数图象的变化趋势.第十四章《一次函数》3.某工厂负责加工A型零件,乙负责加工B型零件。已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/ 件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工的零件所获得的总利润(元)与m(元/件)的函数关系式,并求总利润的最大值、最小值.利用函数与自变量的等量关系列出函数关系式(六)能解决与其他知识结合的较综合问题.第十四章《一次函数》1.如图,直线y=2x+3与x轴交于点A,与y轴交于点B. (1) 求A,B两点的坐标;(2) 过点B作直线BP与x轴交于点P,且使OP=2OA, 求△ABP的面积.2.如图,在平面直角坐标系xoy中,直线l1: 与l2: 交于点C,分别交x轴交于点A,B.(1)求点A,B,C的坐标;(2)求△ABC的面积;(3)在直线l1上是否存在点P,使△PBA是等腰直角三角形,若存在,求出点P的坐标;若不存在,说明理由.第十四章《一次函数》D第十四章《一次函数》D设P2(x,-x+3)一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;返回引入二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。例如不能取负数,不能取小数等四. 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.下面的2个图形中,哪个图象中y是关于x的函数.1、列表(表中给出一些自变量的值及其对应的函数值。) 2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。 五、用描点法画函数的图象的一般步骤:注意:列表时自变量由小到大,相差一样,有时需对称。六、函数有三种表示形式:七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。七.正比例函数的图象与性质:八、一次函数与正比例函数的图象与性质y随x的增大而增大y随x的增大而增大y随x的增大而减少y随x的增大而减少一、二、三一、三、四一、二、四二、三、四1、图象是经过(0,0)与(1,k)的一条直线2、当k>0时,图象过一、三象限;y随x的增大而增大。 当k<0时,图象过二、四象限;y随x的增大而减少。k>0b>0k>0b<0k<0b>0k<0b<0九.怎样画一次函数y=kx+b的图象?1、两点法 y=x+12、平移法先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法十、求函数解析式的方法:11.一次函数与一元一次方程: 求ax+b=0(a,b是 常数,a≠0)的解. x为何值时 函数y= ax+b的值 为0. 从“数”的角度看求ax+b=0(a, b是 常数,a≠0)的解. 求直线y= ax+b 与 x 轴交点的横 坐标. 从“形”的角度看12.一次函数与一元一次不等式: 解不等式ax+b>0(a,b是常数,a≠0) . x为何值时 函数y= ax+b的值 大于0. 从“数”的角度看解不等式ax+b>0(a,b是常数,a≠0) . 求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 从“形”的角度看13.一次函数与二元一次方程组:解方程组自变量(x)为何值时两个函数的值相等.并求出这个函数值 从“数”的角度看解方程组确定两直线交点的坐标.从“形”的角度看应用新知例1 (1)若y=5x3m-2是正比例函数,m= 。1-21、直线y=kx+b经过一、二、四象限,则K 0, b 0.<>此时,直线y=bx+k的图象只能是( ) D练习: 2、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?-2-2练习:向下平移两个单位3.若一次函数y=x+b的图象过点A(1,-1),则b=__________。 -24.根据如图所示的条件,求直线的表达式。 练习: 5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式.解:(1)设所求函数关系式为:Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得解得解析式为:Q=-5t+40 (0≤t≤8)练习:(2)、取t=0,得Q=40;取t=8,得Q=0。描出点A(0,40),B(8,0)。然后连成线段AB即是所求的图形。注意:(1)求出函数关系式时,必须找出自变量的取值范围。 (2)画函数图象时,应根据函数自变量的取值范围来确定图象的范围。图象是包括两端点的线段 5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式.(2)画出这个函数的图象。Q=-5t+40 (0≤t≤8)6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱。(2)服药5时,血液中含药量为每毫升____毫克。263练习:6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(3)当x≤2时y与x之间的函数关系式是___________。(4)当x≥2时y与x之间的函数关系式是___________。(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是___时。y=3xy=-x+84作业:小聪上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小聪离家的路程s(km)和所经过的时间t(分)之间的函数关系如图所示,请根据图象回答下列问题:(1)小聪去超市途中的速度是多少?回家途中的速度是多少?(2)小聪在超市逗留了多少时间?(3)用恰当的方式表示路程s与时间t之间的关系。(4)小聪在来去途中,离家1km处的时间是几时几分?
相关资料
更多