


5.3平行线的性质 同步练习 七年级数学下册人教版
展开5.3平行线的性质
(同步练习)
一、单选题
1.如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角与折射角的度数比为.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为,,在液体中两条折射光线的夹角为,则,,三者之间的数量关系为( )
A. B.
C. D.
2.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中,都与地面l平行,,.当为( )度时,与平行.
A.16 B.60 C.66 D.114
3.如图,,,探索图中角α,β,γ之间的关系式正确的是( )
A. B. C. D.
4.如图,长方形纸片按图①中的虚线第一次折叠得图②,折痕与长方形的一边形成的,再按图②中的虚线进行第二次折叠得到图③,则的度数为( )
A.20° B.25° C.30° D.35°
5.如图,,平分交于点E,若,则 ( )
A. B. C. D.
6.下列命题中,它的逆命题成立的是( )
A.两条直线平行,内错角相等
B.全等三角形的对应角相等
C.如果两个实数相等,那么它们的绝对值相等
D.如果两个实数相等,那么它们的平方相等
7.小明、小亮、小刚、小颖一起研究一道数学题,如图,BD⊥AC与点D,点E是BC边上的一动点,过E作EF⊥AC与点F,点G在AB上,连DG,GE.
小明说:“如果还知道∠GDB=∠FEC,则能得到∠AGD=∠ABC.”
小亮说:“如果∠AGD=∠ABC,可得到∠GDB=∠FEC.”
则下列判断正确的是( )
A.小明说法正确,小亮说法错误 B.小明说法正确,小亮说法正确
C.小明说法错误,小亮说法正确 D.小明说法错误,小亮说法错误
8.如图,直线,现将一个含30°角的直角三角板的锐角顶点放在直线上,将三角板绕点旋转,使直角顶点落在与之间的区域,边与直角相交于点,若,则图中的的值为( )
A.65° B.75° C.85° D.80°
9.如图, ,,,则( )
A. B. C. D.
10.下列命题中,是假命题的是( )
A.对顶角相等 B.同旁内角互补,两直线平行
C.两点之间线段最短 D.内错角相等
二、填空题
11.如图所示,一个三角尺的直角顶点放在直线上,量得,则____.
12.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是__.
13.设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.
14.如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
15.如图,将一副三角尺按如图所示方式摆放,点A,B, D在同一条直线上,EF∥AD,∠E=60°,则∠BFD的度数为_______度
三、解答题
16.【发现】如图1,CE平分∠ACD,AE平分∠BAC.
(1)当∠EAC=∠ACE=45°时,AB与CD的位置关系是______;
当∠EAC=50°,∠ACE=40°时,AB与CD的位置关系是______;
当∠EAC+∠ACE=90°,请判断AB与CD的位置关系并说明理由;
(2)【探究】如图2,AB∥CD,M是AE上一点,∠AEC=90°保持不变,移动顶点E,使CE平分∠MCD,∠BAE与∠MCD存在怎样的数量关系?并说明理由,
(3)【拓展】如图3,AB∥CD,P为线段AC上一定点,Q为直线CD上一动点,且点Q不与点C重合.直接写出∠CPQ+∠CQP与∠BAC的数量关系.
17.如图①,直线AB∥CD,点E,F分别在直线AB,CD上.
(1)若∠1=135°,∠2=155°,试猜想∠P=______.
(2)在图①中探究∠1,∠P,∠2之间的数量关系,并证明你的结论.
(3)将图①变为图②,仍有AB∥CD,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.
18.问题情境:如图1,,,,求的度数.
小明的思路是:过作,通过平行线性质来求.
(1)按小明的思路,易求得的度数为___________度;(直接写出答案)
(2)问题迁移:如图2,,点在射线上运动,记,,当点在、两点之间运动时,问与、之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请写出与、之间的数量关系,并说明理由.
19.如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.
20.如图,,,若,试求的度数.请补充求解过程,并在括号内填上相应的理由.
解:因为,所以.
又因为,
所以∠______=∠______.
所以(______).
所以______(______).
又因为,所以______.
21.已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.
(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________ .
(2)如图(2)AB∥EF,BC∥DE, ∠1与∠2的关系是:____________
(3)经过上述证明,我们可以得到一个真命题:如果____ _____,那么____________.
(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?
参考答案:
1.B2.C3.B4.D5.A6.A7.B8.A9.D10.D
11.30°
12.127
13.7或17.
14.①②④
15.
16.(1)解:当∠EAC=∠ACE=45°时,AB∥CD,理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC=∠ACE=45°,
∴∠BAC=∠ACD=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD,
故答案为:AB∥CD;
当∠EAC=50°,∠ACE=40°时,AB∥CD,理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC=50°,∠ACE=40°
∴∠BAC=100°,∠ACD=80°,
∴∠BAC+∠ACD=180°,
∴AB∥CD,
故答案为:AB∥CD;
当∠EAC+∠ACE=90°,AB∥CD,理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)解:∠BAE+∠MCD=90°,理由如下:
过点E作EF∥AB,如图所示,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=90°,
∴∠AEF+∠FEC=∠BAE+∠ECD=90°,
∵CE平分∠MCD,
∴∠ECD=∠MCD,
∴∠BAE+∠MCD=90°;
(3)解:分两种情况分类讨论,
第一种情况如图,当点Q在射线CD上运动时,∠BAC=∠PQC+∠QPC,
理由:过点P作PE∥AB,
∵AB∥CD,
∴EP∥AB∥CD,
∴∠BAC=∠EPC,∠PQC=∠EPQ,
∵∠EPC=∠EPQ+∠QPC
∴∠BAC=∠PQC+∠QPC;
第二种情况如图,当点Q在射线CD的反向延长线上运动时(点C除外)∠PQC+∠QPC+∠BAC=180°,
理由:∵AB∥CD,
∴∠BAC=∠PCQ,
∵∠PQC+∠QPC +∠PCQ=180°,
∴∠PQC+∠QPC+∠BAC=180°,
综上,∠BAC=∠PQC+∠QPC或∠PQC+∠QPC+∠BAC=180°.
17.(1)解:过点P作PQ∥AB,
∴∠1+∠EPQ=180°,
∵∠1=135°,
∴∠EPQ=180°-∠1=45°,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠2+∠FPQ=180°,
∵∠2=155°,
∴∠FPQ=180°-∠2=25°,
∴∠EPF=∠EPQ+∠FPQ=70°;
故答案为:70°;
(2)解:∠EPF+(∠1+∠2) =360°,理由如下:
过点P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠1+∠EPQ=180°,∠2+∠FPQ=180°,
即∠EPQ=180°-∠1,∠FPQ=180°-∠2,
∴∠EPF=∠EPQ+∠FPQ=360°-(∠1+∠2);
即∠EPF+(∠1+∠2) =360°;
(3)解:过点P作PQ∥AB,过点G作GH∥AB,
∵AB∥CD,
∴PQ∥AB∥GH∥CD,
∴∠1+∠3=180°,∠4+∠5=180°,∠6+∠2=180°,
∴∠1+∠3+∠4+∠5+∠6+∠2=540°,
∵∠EPG=75°,
∴∠3+∠4=75°,
∵∠1+∠2=325°,
∴∠5+∠6=540°-(∠1+∠2)-(∠3+∠4)= 540°-325°-75°=140°.
∴∠PGF的度数为140°.
.
18.(1)解:过点作,
∵,
∴,
∴,,
∵,,
∴,,
∴.
(2)解:,
理由:如图2,过作交于,
∵,
∴,
∴,,
∴;
(3)解:如图所示,当在延长线上时,
过点作交于,则,
∴,,
∴;
如图所示,当在延长线上时,
过点作交于,则,
∴,,
∴.
19.平分,平分
,即
.
20.BCD;CDE;内错角相等,两直线平行;BDE;两直线平行,同旁内角互补;110°
21.(1)AB∥EF,BC∥DE,∠1与∠2的关系是:∠1=∠2
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠2=∠BCE
∴∠1=∠2.
(2)AB∥EF,BC∥DE.∠1与∠2的关系是:∠1+∠2=180°.
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠2+∠BCE=180°
∴∠1+∠2=180°.
(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(4)解:设其中一个角为x°,列方程得x=2x-30或x+2x-30=180,
故x=30或x=70,
所以2x-30=30或110,
答:这两个角分别是30°,30°或70°,110°.