数学第1章 一元二次方程1.2 一元二次方程的解法教学设计
展开《一元二次方程的解法》教案
教学内容
1.给出配方法的概念,然后运用配方法解一元二次方程.
2.理解一元二次方程求根公式的推导过程,了解公式法的概念.
3.因式分解的探究及其方法.
教学目标
1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
3.会熟练应用公式法解一元二次方程.
4.会利用因式分解法解某些简单数字系数的一元二次方程.
重难点关键
重点:
1.讲清配方法的解题步骤.
2.求根公式的推导和公式法的应用.
3.应用因式分解法解一元二次方程.
难点与关键:
1.把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.
2.一元二次方程求根公式法的推导.
3.将方程化为一般形式后,对方程左侧二次三项式的因式分解.
教学过程
一、复习引入
(学生活动)解下列方程:
(1)x2-8x+7=0 (2)x2+4x+1=0
老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:(1)x2-8x+(-4)2+7-(-4)2=0
(x-4)2=9
x-4=±3即x1=7,x2=1
(2)x2+4x=-1
x2+4x+22=-1+22
(x+2)2=3即x+2=±
x1=-2,x2=--2
二、探索新知
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例:解下列方程:
(1)x2=2 (2)4x2-1=0
分析:第1题直接用开平方法解;第2题可先将-1移项,再两边同时除以4化为x2=a的形式,再用直接开平方法解之.
例:解下列方程:
(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
解:(1)移项,得:x2+6x=-5
配方:x2+6x+32=-5+32(x+3)2=4
由此可得:x+3=±2,即x1=-1,x2=-5
(2)移项,得:2x2+6x=-2
二次项系数化为1,得:x2+3x=-1
配方x2+3x+()2=-1+()2(x+)2=
由此可得x+=±,即x1=-,x2=--
(3)去括号,整理得:x2+4x-1=0
移项,得x2+4x=1
配方,得(x+2)2=5
x+2=±,即x1=-2,x2=--2
三、应用拓展
用配方法解方程(6x+7)2(3x+4)(x+1)=6
分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法.
解:设6x+7=y
则3x+4=y+,x+1=y-
依题意,得:y2(y+)(y-)=6
去分母,得:y2(y+1)(y-1)=72
y2(y2-1)=72, y4-y2=72
(y2-)2=
y2-=±
y2=9或y2=-8(舍)
∴y=±3
当y=3时,6x+7=3 6x=-4 x=-
当y=-3时,6x+7=-3 6x=-10 x=-
所以,原方程的根为x1=-,x2=-
用配方法解一般形式的一元二次方程:ax2+bx+b=0(a≠0)
用求根公式解一元二次方程的方法叫做公式法.
1.当b2-4ab>0时,一元二次方程ax2+bx+b=0(a≠0)有两个不等实数根;
2.当b2-4ab=0时,一元二次方程ax2+bx+b=0(a≠0)有两个相等实数根;
3.当b2-4ab<0时,一元二次方程ax2+bx+b=0(a≠0)没有实数根.
一般的,式子b2-4ab叫方程ax+bx+b=0(a≠0)根的判别式.用字母△表示.即△=b2-4ab.
一元二次方程的判别式与根的情况有何关系?
(1)当方程有两个不相等的实数根时,b2-4ab>0
(2)当方程有两个相等的实数根时,b2-4ab=0
(3)当方程没有实数根时,b2-4ab<0
你能用公式法解方程2x2-9x=-8吗?
解:2x2-9x+8=0 1.变形:化已知方程为一般形式;
∵a=2,b=-9,b=8 2.确定系数:用a,b写出各项系数;
△=b2-4ab=(-9)2-4×2×8=27>0
3.计算:b2-4ab的值;4.代入:把有关数值代入公式计算;
5.定根:写出原方程的根.
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出a、b的值;
2、求出△=b2-4ab的值;
3、代入求根公式;
4、写出方程的解;
定义:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例:解下列方程
(1) (2)
解:(1)把方程因式分解得
→或
∴
(2)
移项,合并同类项,得→
因式分解,得
于是得或
∴
归纳:配方法要先配方,再降次;通过配方法可以退出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0.配方法,公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程.总之,解一元二次方程的基本思路是:将二次方程化为一次方程.
四、归纳小结
本节课应掌握:配方法、公式法、因式分解法的概念及用配方法解一元二次方程的步骤.
初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法教学设计: 这是一份初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法教学设计,共5页。教案主要包含了情境引入,探究学习,归纳总结等内容,欢迎下载使用。
初中数学苏科版九年级上册1.2 一元二次方程的解法教案设计: 这是一份初中数学苏科版九年级上册1.2 一元二次方程的解法教案设计,共4页。教案主要包含了情境引入,探究学习,归纳总结等内容,欢迎下载使用。
初中数学苏科版九年级上册1.2 一元二次方程的解法教案: 这是一份初中数学苏科版九年级上册1.2 一元二次方程的解法教案,共3页。教案主要包含了探究学习,归纳总结等内容,欢迎下载使用。