|课件下载
终身会员
搜索
    上传资料 赚现金
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)
    立即下载
    加入资料篮
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)01
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)02
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)03
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)04
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)05
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)06
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)07
    7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)08
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学选择性必修 第三册7.3 离散型随机变量的数字特征图片课件ppt

    展开
    这是一份数学选择性必修 第三册7.3 离散型随机变量的数字特征图片课件ppt,共29页。PPT课件主要包含了温故知新,两点分布列,自主探究,归纳小结,巩固提升,规律小结,随堂检测等内容,欢迎下载使用。

    7.3.2离散型随机变量的均值
    1.离散型随机变量的定义:
    2.离散型随机变量的分布列
    探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?
    当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
    从平均值的角度比较,甲的射箭水平比乙高.
    一、离散型随机变量取值的平均值.
    一般地,若离散型随机变量X的概率分布为:
    为随机变量X的均值(mean)或数学期望(mathematical expectatin),数学期望简称期望.均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.
    例1. 在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X 的均值是多少?
    分析:罚球有命中和不中两种可能结果,命中时X=1,不中时X=0,因此随机变量X服从两点分布,X的均值反映了该运动员罚球1次的平均得分水平.
    解:因为P(X=1)=0.8,P(X=0)=0.2, 所以E(X )=1×P(X=1)+0×P(X=0)=1×0.8+0×0.2 =0.8即该运动员罚球1次的得分X的均值是0.8.
    一般地,如果随机变量X服从两点分布,
    跟踪训练1:在一次数学竞赛中共有三道题,答对一题得1分,如果某位参赛选手做对每道题的概率均为0.6,那么他做一题得分X 的均值是多少?
    例2.抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.
    分析:先求出X的分布列,再根据定义计算X的均值。
    跟踪训练2.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.
    离散型随机变量的均值的性质:若X,Y 是两个随机变量,且Y=aX+b,则有E(Y )=aE(X )+b,即随机变量X 的线性函数的均值等于这个随机变量的均值E(X )的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X )+b,即随机变量X 与常数之和的均值等于X 的均值与这个常数的和.(3)当b=0时,E(aX )=aE(X ),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.
    例3:猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如下表所示:规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首,求嘉宾获得的公益基金总额X的分布列及均值.
    ?的均值:?(X)=0×0.2+1000×0.32+3000×0.288+6000×0.192=2336.
    思考:如果改变猜歌的顺序,获得公益基金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?
    按由易到难的顺序来猜歌,获得的公益基金的均值最大
    例4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元。为保护设备,有以下三种方案:方案1:运走设备,搬运费为3800元。方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水。方案3:不采取措施,希望不发生洪水。工地的领导该如何决策呢?
    分析:决策目标为总损失(投入费用与设备损失之和)越小越好,根据题意,各种方案在不同状态下的总损失如表所示:
    方案2和方案3的总损失都是随机变量,可以采用期望总损失最小的方案。解:设方案1、方案2、方案3的总损失分别为X1,X2,X3. 采用方案1,无论有无洪水,都损失3800元.因此,P(X1=3800)=1. 采用方案2,遇到大洪水时,总损失为2000+6000=62000元;没有大洪水时,总损失为2000元,因此,P(X2=62 000)=0.01,P(X2=2000)=0.99. 采用方案3,P(X3=60 000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74.于是,E(X1)=3800, E(X2)=62 000×0.01+2 000×0.99=2 600, E(X3)=60 000×0.01+10 000×0.25+0×0.74=3 100.因此,从期望损失最小的角度,应采取方案2.
    值得注意的是,上述结论是通过比较“期望总损失”而得出的,一般地,我们可以这样来理解“期望总损失”:如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小,不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.
    解析:X 的可能取值为3,2,1,0,P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;P(X=1)=0.42×0.6=0.096;P(X=0)=0.43=0.064.所以E(X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.答案:C
    2.某射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为(  ) D.2.4
    3.已知ξ 的分布列如下表,若η=3ξ+2,则E(η)=     . 
    5.口袋里装有大小相同的8张卡片,其中3张标有数字1,3张标有数字2,2张标有数字3.第一次从口袋里任意抽取1张,放回口袋里后第二次再任意抽取1张,记第一次与第二次取到卡片上数字之和为ξ.求:(1)ξ 为何值时,其发生的概率最大?并说明理由.(2)随机变量ξ 的数学期望E(ξ ).
    相关课件

    高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征课前预习ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000358_t3/?tag_id=26" target="_blank">7.3 离散型随机变量的数字特征课前预习ppt课件</a>,共30页。PPT课件主要包含了创设情境揭示课题,阅读精要研讨新知,例题研讨,学习例题的正规表达,学习例题的常规方法,从例题中学会思考,如何看例题,小组互动,探索与发现思考与感悟,归纳小结回顾重点等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学课件ppt: 这是一份人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学课件ppt,共26页。

    高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征优质课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征优质课件ppt,共5页。PPT课件主要包含了复习回顾,新课引入,新知探究,概念生成,典例解析,方法归纳,巩固练习,课堂小结等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        7.3.1离散型随机变量的均值 2021-2022学年高二下学期数学同步课件(人教A版2019选择性必修第三册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map