- 【同步讲义】苏科版数学八年级上册:专题02 直角三角形全等的判定综合题 讲义(导图+易错点拨+易错题专训) 试卷 4 次下载
- 【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训) 试卷 5 次下载
- 【同步讲义】苏科版数学八年级上册:专题04 线段的垂直平分线性质综合题 讲义(导图+易错点拨+易错题专训) 试卷 5 次下载
- 【同步讲义】苏科版数学八年级上册:专题05 等腰三角形的判定和性质综合题 讲义(导图+易错点拨+易错题专训) 试卷 4 次下载
- 【同步讲义】苏科版数学八年级上册:专题06 等边三角形的判定和性质综合题 讲义(导图+易错点拨+易错题专训) 试卷 4 次下载
初中数学苏科版八年级上册1.2 全等三角形优秀习题
展开专题01 全等三角形的判定与性质(综合题)
知识点01:全等三角形判定1——“角边角”
全等三角形判定1——“角边角”
的两个三角形全等(可以简写成“角边角”或“ASA”).
细节剖析:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.
知识点02:全等三角形判定2——“边角边”
1. 全等三角形判定2——“边角边”
的两个三角形全等(可以简写成“边角边”或“SAS”).
细节剖析:如图,如果AB = ,∠A=∠,AC = ,则△ABC≌△. 注意:这里的角,指的是两组对应边的夹角.
2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.
如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是 相等, 不一定全等.
知识点03:全等三角形判定3——“边边边”
全等三角形判定1——“边边边”
的两个三角形全等.(可以简写成“边边边”或“SSS”).
细节剖析:如图,如果=AB,=AC,=BC,则△ABC≌△.
知识点04:全等三角形判定4——“角角边”
1.全等三角形判定4——“角角边”
的两个三角形全等(可以简写成“角角边”或“AAS”)
细节剖析:由三角形的内角和等于180°可得 .这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.
2.三个角对应相等的两个三角形不一定全等.
如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.
知识点05:判定方法的选择
1.选择哪种判定方法,要根据具体的已知条件而定,见下表:
已知条件 | 可选择的判定方法 |
一边一角对应相等 | SAS AAS ASA |
两角对应相等 | ASA AAS |
两边对应相等 | SAS SSS |
2.如何选择三角形证全等
(1)可以从求证出发,看求证的 在哪两个可能全等的三角形中,可以证这两个三角形全等;
(2)可以从已知出发,看已知条件确定证哪两个三角形全等;
(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;
(4)如果以上方法都行不通,就
一.选择题
1.(2022秋•仪征市校级月考)在△ABC中,AC=6,中线AD=10,则AB边的取值范围是( )
A.16<AB<22 B.14<AB<26 C.16<AB<26 D.14<AB<22
2.(2021秋•栾城区校级期末)如图,在△ABC中,D,E是BC边上的两点,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠CAE的度数为( )
A.50° B.60° C.40° D.20°
3.(2021秋•原阳县期末)如图,在3×3的方格图中,每个小方格的边长都为1,则∠1与∠2的关系是( )
A.∠1=∠2 B.∠2=2∠1 C.∠1+∠2=90° D.∠1+∠2=180°
4.(2021秋•民权县期末)如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠FAC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为( )
A.4个 B.3个 C.2个 D.1个
5.(2022•沙坪坝区校级开学)如图,在△ABC中,若分别以AB、AC为边作△ABD和△ACE,且∠DAB=∠CAE=α,AD=AB,AC=AE,DC、BE交于点P,连接AP,则∠APC的度数为( )
A.90°﹣α B.90°+α C.90°﹣α D.90°+α
6.(2022•仓山区校级开学)如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是( )
A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°
二.填空题
7.(2022•碑林区校级开学)为迎接全国第十四届运动会,我校举行“缓堵保畅,安全出行,小手拉大手活动”每天值班老师和部分学生在校门两边站岗执勤(线段CD所在区域).如图,AB∥OH∥CD,AC与BD相交于O,OD⊥CD于点D,OD=OB,已知AB=320米,请根据上述信息求出执勤区域CD的长度是 .
8.(2022•碑林区校级开学)如图,在△ABC中,AC=5,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为 .
9.(2022春•铜川期末)如图,在△ABC中,AB=AC,点D是BC边的中点,连接AD,点P在AD上,连接BP,CP,过点D作DE⊥BP,DF⊥CP,垂足分别为EF,则下列结论:
①BD=CD;
②△BDE≌△CDF;
③DE=PE;
④△BCP是等腰三角形.
其中正确的有 .(填序号)
10.(2022秋•通州区月考)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有 .
11.(2022秋•南岗区校级月考)如图,△ABC中,CD为中线,在AC边上取点E,连接BE交CD于F,∠AEB=60°,且BF=AC,若CD=6,BF=10,则BC长为 .
12.(2022•鼓楼区校级开学)添加辅助线是很多同学感觉比较困难的事情.如图1,在Rt△ABC中,∠ABC=90°,BD是高,E是△ABC外一点,BE=BA,∠E=∠C,若DE=BD,AD=9,BD=12,求△BDE的面积.同学们可以先思考一下…,小颖思考后认为可以这样添加辅助线:在BD上截取BF=DE,(如图2).同学们,根据小颖的提示,聪明的你可以求得△BDE的面积为 .
13.(2022春•东坡区期末)如图,△ABC中,AB=13cm,BC=11cm,AC=6cm,点E是BC边的中点,点D在AB边上,现将△DBE沿着BA方向向左平移至△ADF的位置,则四边形DECF的周长为 cm.
三.解答题
14.(2022秋•宜兴市校级月考)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AD⊥BE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.
(1)求证:∠EAD=∠BAD;
(2)求证:AC=EF.
15.(2022秋•如皋市校级月考)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).
(1)AB与DE有什么关系?请说明理由.
(2)线段AP的长为 (用含t的式子表示).
(3)连接PQ,当线段PQ经过点C时,t的值为 .
16.(2022•鼓楼区校级开学)如图,在△ABC中,AD是BC边上的中线,交BC于点D.
(1)如图①,延长AD到点E,使DE=AD,连接BE.求证:△ACD≌△EBD;
(2)如图②,若∠BAC=90°,试探究AD与BC有何数量关系,并说明理由.
17.(2022秋•江夏区校级月考)如图BE⊥CD,AB=AD,AC=AE,过A点作AG⊥DE于G,延长GA交BC于F,
(1)求证:F为BC中点;
(2)若AF=12.5,AE=15,求△ADE的面积S△ADE.
18.(2021秋•松桃县期末)如图①:△ABC中,AC=BC,延长AC到E,过点E作EF⊥AB交AB的延长线于点F,延长CB到G,过点G作GH⊥AB交AB的延长线于H,且EF=GH.
(1)求证:△AEF≌△BGH;
(2)如图②,连接EG与FH相交于点D,若AB=4,求DH的长.
19.(2022•信阳模拟)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.
(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 ;
(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;
(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.
20.(2021秋•绥滨县期末)如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;
(1)求证:AD=BE;
(2)试说明AD平分∠BAE;
(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.
数学6.1 函数精品课堂检测: 这是一份数学6.1 函数精品课堂检测,文件包含专题16一次函数综合题综合题原卷版docx、专题16一次函数综合题综合题解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
初中数学苏科版八年级上册4.3 实数优秀课后复习题: 这是一份初中数学苏科版八年级上册4.3 实数优秀课后复习题,文件包含专题12实数的运算综合题原卷版docx、专题12实数的运算综合题解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
初中数学苏科版八年级上册4.3 实数精品当堂检测题: 这是一份初中数学苏科版八年级上册4.3 实数精品当堂检测题,文件包含专题11实数与数轴综合题原卷版docx、专题11实数与数轴综合题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。