人教A版(2019)必修2-概率知识总结教案
展开概率知识总结
1.随机试验
(1)定义:把对随机现象的实现和对它的观察称为随机试验.
(2)特点:①试验可以在相同条件下重复进行;
②试验的所有可能结果是明确可知的,并且不止一个;
③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.
2.样本点和样本空间
(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.
(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.
3.事件的分类
(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.
②随机事件一般用大写字母A,B,C,…表示.
③在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.
(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.
(3)不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.
4.事件的关系或运算的含义及符号表示
事件的关系或运算 | 含义 | 符号表示 |
包含 | A发生导致B发生 | A⊆B |
并事件(和事件) | A与B至少一个发生 | A∪B或A+B |
交事件(积事件) | A与B同时发生 | A∩B或AB |
互斥(互不相容) | A与B不能同时发生 | A∩B=∅ |
互为对立 | A与B有且仅有一个发生 | A∩B=∅,A∪B=Ω |
5.古典概型
具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.
(1)有限性:样本空间的样本点只有有限个;
(2)等可能性:每个样本点发生的可能性相等.
6.古典概型的判断
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.
下列三类试验都不是古典概型:
①样本点个数有限,但非等可能.
②样本点个数无限,但等可能.
③样本点个数无限,也不等可能.
7.古典概型的概率公式
一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率
P(A)==.
其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.
8.概率的性质
性质1:对任意的事件A,都有P(A)≥0;
性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;
性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A) +P(B);
性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);
性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.
性质6:设A,B是一个随机试验中的两个事件,有
P(A∪B)=P(A)+P(B)-P(A∩B).
9.相互独立的概念
设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.
10.相互独立的性质
若事件A与B相互独立,那么A与,与B,与也都相互独立.
11.频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
频率与概率的区别与联系
名称 | 区别 | 联系 |
频率 | 本身是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同 | (1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率 (2)在实际问题中,事件的概率通常情况下是未知的,常用频率估计概率 |
概率 | 是一个[0,1]中的确定值,不随试验结果的改变而改变 |
人教A版 (2019)必修 第二册10.3 频率与概率精品教学设计: 这是一份人教A版 (2019)必修 第二册10.3 频率与概率精品教学设计,共3页。教案主要包含了新课导入,探究学习,巩固提升,课堂小结等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册10.3 频率与概率优秀教学设计: 这是一份高中数学人教A版 (2019)必修 第二册10.3 频率与概率优秀教学设计,共4页。教案主要包含了探究学习,巩固提升,课堂小结等内容,欢迎下载使用。
高中第十章 概率10.1 随机事件与概率获奖教学设计: 这是一份高中第十章 概率10.1 随机事件与概率获奖教学设计,共5页。教案主要包含了复习导入,讲授新知,课堂小结等内容,欢迎下载使用。