2020-2021学年23.1 图形的旋转课时作业
展开一、选择题
下列运动属于旋转的是( )
A.足球在草地上滚动 B.火箭升空的运动
C.汽车在急刹车时向前滑行 D.钟表的钟摆动的过程
如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明( )
A.△ABC与△ABD不全等
B.有两边分别相等的两个三角形不一定全等
C.两边和它们的夹角分别相等的两个三角形全等
D.有两边和其中一边的对角分别相等的两个三角形不一定全等
如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1坐标是( )
A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)
如图,一个直角三角板ABC绕其直角顶点C旋转到△DCE的位置,若∠BCD=30°,下列结论错误的是( )
A.∠ACD=120° B.∠ACD=∠BCE C.∠ACE=120° D.∠ACE﹣∠BCD=120°
如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
如图,把△ABC绕B点逆时针方旋转26°得到△A′BC′,若A′C′正好经过A点,则∠BAC=( )
A.52° B.64° C.77° D.82°
如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为( )
A.30° B.40° C.50° D.60°
在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B坐标为( )
A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(﹣3,﹣4)
如图所示,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).若将△ABC绕着点C顺时针旋转90º,得到△A'B'C',点A,B的对应点A',B'的坐标分别为(a,b),(c,d),则(ab-cd)2023的值为( )
A.0 B.1 C.-1 D.无法计算
如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )
A.(60,0) B.(72,0) C.(67.2,1.8) D.(79.2,1.8)
二、填空题
如图所示是小明家一座古老的钟表,该钟表分针的运动可以看做是一种旋转现象,分针匀速旋转时,它的旋转中心是该钟表的旋转轴的轴心,那么该钟表分针经过20分钟旋转了______度.
如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为 .
分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是 度.
在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD,把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_______.
三、解答题
如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC= ;
(2)求线段DB的长度.
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0),B(6,0),D(0,4)
(1)根据图形直接写出点C的坐标;
(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.
如图所示,正方形ABCD的边BC上有一点E,∠DAE的平分线交CD于点F.
求证:AE=DF+BE.
\s 0 参考答案
答案为:D.
答案为:D.
答案为:A.
答案为:C
答案为:D.
答案为:C
答案为:B
答案为:B.
答案为:C;
答案为:A
答案为:120
答案为:15°.
答案为:90°;
答案为:80或120
解:(1)∵AC=AD,∠CAD=60°,
∴△ACD是等边三角形,
∴DC=AC=4.
故答案是:4;
(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=DC•cs30°=4×=2,
∴BE=BC﹣CE=3﹣2=.
∴Rt△BDE中,BD===.
(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE(SAS);
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴四边形ABED为菱形.
解:(1)C (6,4)
(2)m过四边形ABCD的中心(3,2),则m的解析式为y=-4/3x+6.
解:如图,将△ADF绕点A顺时针旋转90°得△ABF′,
则∠3=∠1,∠AFD=∠F′,∠ABF′=∠D,BF′=DF.
∵四边形ABCD为正方形,
∴AB∥CD,∠ABC=∠D=90°,
∴∠AFD=∠FAB,∠ABF′=∠D=90°,
∴∠ABF′+∠ABC=180°,
∴F′,B,C三点共线.
∵∠FAB=∠2+∠BAE,
∴∠AFD=∠2+∠BAE.
又∵∠DAE的平分线交CD于点F,
∴∠1=∠2,
∴∠3=∠2,
∴∠AFD=∠3+∠BAE,
∴F′=∠3+∠BAE.
∵∠F′AE=∠3+∠BAE,
∴∠F′AE=∠F′,
∴AE=EF′=BF′+BE=DF+BE.
人教版九年级上册23.1 图形的旋转同步训练题: 这是一份人教版九年级上册23.1 图形的旋转同步训练题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册23.1 图形的旋转复习练习题: 这是一份初中数学人教版九年级上册23.1 图形的旋转复习练习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册第二十三章 旋转23.1 图形的旋转精品同步达标检测题: 这是一份人教版九年级上册第二十三章 旋转23.1 图形的旋转精品同步达标检测题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。