高中数学人教A版 (2019)选择性必修 第二册4.2 等差数列精品同步训练题
展开(25分钟·50分)
一、选择题(每小题5分,共20分)
1.已知等差数列{an}的前n项和为Sn,Sm-1=16,Sm=25,a1=1(m≥2,且m∈N),则m的值是( )
A.4B.5C.6D.7
【解析】选B.设等差数列{an}的公差为d,
因为Sm-1=16,Sm=25,a1=1(m≥2,且m∈N),
所以am=Sm-Sm-1=25-16=9=1+(m-1)d,
m+d=25,联立解得m=5,d=2.
2.数列{an}的通项公式是an=,若前n项和为10,则项数为( )
A.11B.99C.120D.121
【解析】选C.因为an==-,
所以Sn=a1+a2+…+an=(-1)+(-)+…+(-)=-1,令-1=10,得n=120.
3.已知数列{an}的前n项和Sn=n2-4n+1,则|a1|+|a2|+…+|a10| 的值为( )
A.61B.62C.65D.67
【解析】选D.对n分情况讨论当n=1时,S1=a1=-2.当n≥2时,an=Sn-Sn-1=(n2-4n+1)-[(n-1)2-4(n-1)+1]=2n-5,
所以an=
由通项公式得a1
所以|a1|+|a2|+…+|a10|=-(a1+a2)+(a3+a4+…+a10)=S10-2S2=102-4×10+1-2×(-3)=67.
4.据科学计算,运载“嫦娥”号探月飞船的“长征”二号系列火箭,在点火后1分钟通过的路程为2 km,以后每分钟通过的路程增加2 km,在达到离地面240 km的高度时,火箭与飞船分离,则这一过程大约需要的时间是( )
A.10分钟B.13分钟
C.15分钟D.20分钟
【解析】选C.由题意知火箭在这个过程中路程随时间的变化成等差数列,设第n分钟后通过的路程为an,则a1=2,公差d=2,an=2n,Sn=·n=240,解得n=15或n=-16(舍去).
二、填空题(每小题5分,共10分)
5.已知数列{an}的前n项和Sn=3+2n,则a5=______,an=________.
【解析】因为Sn=3+2n,
所以a5=S5-S4=3+25-(3+24)=16.
a1=S1=5,
n≥2时,an=Sn-Sn-1
=(3+2n)-(3+2n-1)=2n-1,
当n=1时,上式不成立,所以an=
答案:16
6.(2020·南通高二检测)设Sn为等差数列{an}的前n项和.若S9=-a5,a1>0,则使得an>Sn的n的最小值为________.
【解析】因为Sn为等差数列{an}的前n项和,S9=-a5,所以S9=9a5=-a5,所以S9=-a5=0,
所以a1+4d=0,a1=-4d,
由an>Sn,得a1+(n-1)d>na1+d,
即-4d+(n-1)d>-4nd+d,
因为d<0,所以整理得n2-11n+10>0,
解得n>10,所以n的最小值为11.
答案:11
三、解答题(每小题10分,共20分)
7.已知等差数列{an}的前n项的和为Sn,a3=5,S10=100.
(1)求数列{an}的通项公式.
(2)设bn=,求数列{bn}的前n项和Tn.
【解析】(1)设等差数列{an}的公差为d,
由题意知解得a1=1,d=2.
所以数列{an}的通项公式为an=2n-1.
(2)bn===
所以Tn
=
==-.
8.(2019·全国卷Ⅰ)记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式.
(2)若a1>0,求使得Sn≥an的n的取值范围.
【解析】(1)设{an}的公差为d.
由S9=-a5得a1+4d=0.
由a3=4得a1+2d=4.
于是a1=8,d=-2.
因此{an}的通项公式为an=10-2n.
(2)由S9=-a5得a1=-4d,
故an=(n-5)d,Sn=.
由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10.
所以n的取值范围是{n|1≤n≤10,n∈N}.
【加练·固】
若等差数列{an}的首项a1=13,d=-4,记Tn=|a1|+|a2|+…+|an|,求Tn.
【解析】因为等差数列{an}的首项a1=13,d=-4,
所以an=13+(n-1)×(-4)=17-4n,
等差数列{an}的前n项和Sn=13n+×(-4)=15n-2n2,
由an=17-4n>0,得n<,
a4=17-16=1,a5=17-4×5=-3,
因为Tn=|a1|+|a2|+…+|an|,
所以n≤4时,Tn=Sn=15n-2n2,
n≥5时,Tn=-Sn+2S4=2n2-15n+56.
所以Tn=
(15分钟·25分)
1.(5分)已知数列{an}:,+,++,+++,…,那么数列{bn}=的前n项和Sn为( )
A.4 B.4
C.1-D.-
【解析】选A.因为an===,所以bn=== 4.
所以Sn=41-+-+-+…+-=4.
【加练·固】
一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于( )
A.12 B.16 C.9 D.16或9
【解析】选C.an=120°+5°(n-1)=5°n+115°,an<180°,所以n<13,n∈N*,由n边形内角和定理得(n-2)×180=120n+×5,解得n=16或n=9,又n<13,n∈N*,所以n=9.
2.(5分)(多选题)等差数列{an}的前n项和为Sn,若a1>0,公差d≠0,则下列说法正确的是( )
A.若S5=S9,则必有S14=0
B.若S5=S9,则必有S7是Sn中的最大项
C.若S6>S7,则必有S7>S8
D.若S6>S7,则必有S5>S6
【解析】选ABC.根据题意,依次分析选项:
对于A,若S5=S9,必有S9-S5=a6+a7+a8+a9=2(a7+a8)=0,则a7+a8=0,S14== =0,A正确;
对于B,若S5=S9,必有S9-S5=a6+a7+a8+a9=2(a7+a8)=0,又由a1>0,则必有S7是Sn中的最大项,B正确;
对于C,若S6>S7,则a7=S7-S6<0,又由a1>0,必有d<0,则a8=S8-S7<0,必有S7>S8,C正确;
对于D,若S6>S7,则a7=S7-S6<0,而a6的符号无法确定,故S5>S6不一定正确,D错误.
3.(5分)已知数列{an}满足a1+2a2+…+nan=n(n+1)(n+2),则an=________.
【解析】由a1+2a2+…+nan=n(n+1)(n+2),①
当n≥2,n∈N+时,得a1+2a2+…+(n-1)an-1
=(n-1)n(n+1),②
①-②,得nan=n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)[(n+2)-(n-1)]=3n(n+1),
所以an=3(n+1)(n≥2,n∈N+).
又当n=1时,a1=1×2×3=6也适合上式,
所以an=3(n+1),n∈N+.
答案:3(n+1)(n∈N+)
4.(10分)数列{an}满足an=6-(n∈N*,n≥2).
(1)求证:数列是等差数列.
(2)若a1=6,求数列{lg an}的前999项的和S.
【解析】(1)数列{an}满足,an=6-(n∈N*,n≥2),所以-=-=
=,所以数列是等差数列.
(2)因为a1=6,所以=.
由(1)知:=+=,
所以an=,所以lg an=lg 3+lg(n+1)-lg n.
所以数列{lg an}的前999项和S=999lg 3+(lg 2-lg 1+lg 3-lg 2+…+lg 1 000-
lg 999)
=999lg 3+lg 1 000=999lg 3+3.
1.已知数列{an}的前n项和为Sn,a1=1,an+an+1=2n+1(n∈N*),则S21的值为________.
【解析】将n=1代入an+an+1=2n+1得a2=3-1=2,
由an+an+1=2n+1①,可以得到an+1+an+2=2n+3②,②-①得an+2-an=2,所以数列{an}的奇数项、偶数项都是以2为公差的等差数列,
则a21=1+10×2=21,a20=2+9×2=20,
所以S21=(a1+a3+a5+…+a21)+(a2+a4+a6+…
+a20)=+=231.
答案:231
2.首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.则d的取值范围为( )
A.d≤-2或d≥2
B.-2≤d≤2
C.d<0
D.d>0
【解析】选A.由S5S6+15=0,
则(5a1+10d)(6a1+15d)+15=0,
整理可得,2+9a1d+10d2+1=0有解,
故Δ=81d2-8(1+10d2)≥0,
解可得,d≥2或d≤-2.
关闭Wrd文档返回原板块
人教A版 (2019)选择性必修 第二册4.3 等比数列精品课堂检测: 这是一份人教A版 (2019)选择性必修 第二册4.3 等比数列精品课堂检测,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第二册第四章 数列4.2 等差数列精品巩固练习: 这是一份高中数学人教A版 (2019)选择性必修 第二册第四章 数列4.2 等差数列精品巩固练习,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第二册4.2 等差数列优秀课后测评: 这是一份高中数学人教A版 (2019)选择性必修 第二册4.2 等差数列优秀课后测评,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

