终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    11.1.1三角形的边 课件

    立即下载
    加入资料篮
    11.1.1三角形的边第1页
    11.1.1三角形的边第2页
    11.1.1三角形的边第3页
    11.1.1三角形的边第4页
    11.1.1三角形的边第5页
    11.1.1三角形的边第6页
    11.1.1三角形的边第7页
    11.1.1三角形的边第8页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学11.1.1 三角形的边教学演示ppt课件

    展开

    这是一份初中数学11.1.1 三角形的边教学演示ppt课件,共33页。PPT课件主要包含了埃及金字塔,氨气分子结构示意图,飞机机翼,△ABC,cab,顶点C,顶点A,顶点B,三角形的对边与对角,不符合等内容,欢迎下载使用。
    1.认识三角形并会用几何语言表示三角形,了解三角 形分类.2.掌握三角形的三边关系.(难点) 3.运用三角形三边关系解决有关的问题.(重点)
    问题:(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑 物到微小的分子结构,都有什么样的形象?(2)在我们的生活中有没有这样的形象呢?试举例.
    问题1:观察下面三角形的形成过程,说一说什么叫三角形?
    定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.
    问题2:三角形中有几条线段?有几个角?
    边:线段AB,BC,CA是三角形的边.顶点:点A,B,C是三角形的顶点,角:∠A,∠B,∠C叫作三角形的内角,简称三角 形的角.
    有三条线段,三个角
    记法:三角形ABC用符号表示________.边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
    在△ABC中,AB边所对的角是:∠A所对的边是:
    再说几个对边与对角的关系试试.
    辨一辨:下列图形符合三角形的定义吗?
    ①位置关系:不在同一直线上;②联接方式:首尾顺次相接.
    三角形应满足以下两个条件:
    表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
    基本要素:三角形的边:边AB、BC、CA;三角形的顶点:顶点A、B、C;三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
    特别规定:三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c.
    5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
    找一找:(1)图中有几个三角形?用符号表示出这些三角形?
    (2)以AB为边的三角形有哪些?
    (3)以E为顶点的三角形有哪些?
    △ ABE 、△BCE、 △CDE.
    (4)以∠D为角的三角形有哪些?
    △ BCD、 △DEC.
    (5)说出△BCD的三个角和三个顶点所对的边.
    △BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
    问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?
    锐角三角形、 直角三角形、 钝角三角形.
    问题2:你能找出下列三角形各自的特点吗?
    三条边各不相等的三角形叫做不等边三角形 ;
    有两条边相等的三角形叫做等腰三角形;
    三条边都相等的三角形叫做等边三角形.
    思考:等边三角形和等腰三角形之间有什么关系?
    我们可以把三角形按照三边情况进行分类
    腰和底不等的等腰三角形
    等边三角形(三边都相等 的三角形)
    (2)等边三角形是特殊的等腰三角形.( )
    (1)一个钝角三角形一定不是等腰三角形.( )
    (3)等腰三角形的腰和底一定不相等.( )
    (4)等边三角形是锐角三角形.( )
    (5)直角三角形一定不是等腰三角形.( )
    在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?
    AC+CB>AB(两点之间线段最短)
    路线1:从A到C再到B的路线走;路线2:沿线段AB走.
    请问:路线1、路线2哪条路程较短,你能说出根据吗?
    解:路线2较短;两点之间线段最短.
    三角形两边的和大于第三边.三角形两边的差小于第三边.
    议一议 1.在同一个三角形中,任意两边之和与第三边有什么 大小关系? 2.在同一个三角形中,任意两边之差与第三边有什么 大小关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?理由是什么?
    例1 有两根长度分别为5cm和8cm的木棒,用长度 为2cm的木棒与它们能摆成三角形吗?为什么?长 度为13cm的木棒呢?
    判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第三条线段即可.
    解:取长度为2cm的木棒时,由于2+5=7BC(三角形的任意两边之和大于第三边).
    又因为 AD = BD,
    则BD+DC = AD+DC = AC,
    1.下列长度的三条线段能否组成三角形?为什么?
    (1) 3,4,8 ( )(2) 2,5,6 ( )(3) 5,6,10 ( )(4) 3,5,8 ( )
    4.如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为______________.
    3.如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长为______________.
    2.五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中三条线为边长可以构成________个三角形.
    5.若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.
    解:设第三边长为x,根据三角形的三边关系,可得,
    7-2<x<7+2,即5<x<9,
    又x为奇数,则第三边的长为7.
    6.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
    解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

    相关课件

    数学八年级上册11.1.3 三角形的稳定性教学课件ppt:

    这是一份数学八年级上册11.1.3 三角形的稳定性教学课件ppt,共12页。PPT课件主要包含了知识要点,三角形的稳定性,四边形的不稳定性,不稳定,稳定性,不会改变,会改变,没有稳定性,具有稳定性,不具有稳定性等内容,欢迎下载使用。

    初中数学人教版八年级上册11.1.1 三角形的边集体备课课件ppt:

    这是一份初中数学人教版八年级上册11.1.1 三角形的边集体备课课件ppt,共17页。PPT课件主要包含了导入新课,探究新知,三角形的相关概念,再观察,等腰三角形,三角形的分类,AB+AC,想一想为什么,不可能等内容,欢迎下载使用。

    数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线教学课件ppt:

    这是一份数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线教学课件ppt,共21页。PPT课件主要包含了回忆与思考,用几何符号表示为,范例学习,新知运用2等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map