搜索
    上传资料 赚现金
    2020年高中数学新教材同步必修第一册 第5章 5.4.2 第1课时 周期性与奇偶性 学案
    立即下载
    加入资料篮
    2020年高中数学新教材同步必修第一册  第5章 5.4.2 第1课时 周期性与奇偶性 学案01
    2020年高中数学新教材同步必修第一册  第5章 5.4.2 第1课时 周期性与奇偶性 学案02
    2020年高中数学新教材同步必修第一册  第5章 5.4.2 第1课时 周期性与奇偶性 学案03
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质优秀第1课时学案及答案

    展开
    这是一份高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质优秀第1课时学案及答案,共10页。学案主要包含了三角函数的周期问题,三角函数的奇偶性等内容,欢迎下载使用。

    第1课时 周期性与奇偶性


    学习目标 1.了解周期函数、周期、最小正周期的意义.2.会求常见三角函数的的周期.3.通过图象直观理解奇偶性,并能正确确定相应的对称轴和对称中心.








    知识点一 周期性


    1.函数的周期性


    (1)一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.


    (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数叫做f(x)的最小正周期.


    思考 周期函数的周期是否唯一?


    答案 不唯一.若f(x+T)=f(x),则f(x+nT)=f(x),(n∈Z,且n≠0).


    2.正弦、余弦函数的周期性


    正弦函数y=sin x(x∈R)和余弦函数y=cs x(x∈R)都是周期函数,2kπ(k∈Z,且k≠0)都是它们的周期.最小正周期为2π.


    知识点二 正弦、余弦函数的奇偶性


    正弦函数是奇函数,余弦函数是偶函数.


    思考 判断函数的奇偶性除了定义外,还有判断函数奇偶性的方法吗?


    答案 若函数的图象关于原点对称,则该函数是奇函数,若函数的图象关于y轴对称,则该函数是偶函数.





    1.函数y=sin x,x∈(-π,π]是奇函数.( × )


    2.正弦函数y=sin x的图象是轴对称图形,也是中心对称图形.( √ )


    3.余弦函数y=cs x是偶函数,图象关于y轴对称,对称轴有无数多条.( √ )

















    一、三角函数的周期问题


    例1 求下列函数的周期:


    (1)y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)));


    (2)y=|sin x|.


    解 (1)方法一 (定义法)


    y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)+2π))=sineq \b\lc\[\rc\](\a\vs4\al\c1(2x+π+\f(π,4))),


    所以周期为π.


    方法二 (公式法)


    y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))中ω=2,T=eq \f(2π,ω)=eq \f(2π,2)=π.


    (2)作图如下:





    观察图象可知周期为π.


    反思感悟 求三角函数周期的方法


    (1)定义法:即利用周期函数的定义求解.


    (2)公式法:对形如y=Asin(ωx+φ)或y=Acs(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,T=eq \f(2π,|ω|).


    (3)观察法:即通过观察函数图象求其周期.


    跟踪训练1 利用周期函数的定义求下列函数的周期.


    (1)y=cs eq \f(x,2),x∈R;


    (2)y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,4))),x∈R.


    解 (1)因为cs eq \f(1,2)(x+4π)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+2π))=cs eq \f(x,2),


    由周期函数的定义知,y=cs eq \f(x,2)的周期为4π.


    (2)因为sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3)x+6π-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x+2π-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,4))),


    由周期函数的定义知,y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x-\f(π,4)))的周期为6π.





    二、三角函数的奇偶性


    例2 判断下列函数的奇偶性:


    (1)f(x)=sin xcs x;


    (2)f(x)=eq \f(cs x,1-sin x);


    (3)f(x)=eq \r(1-cs x)+eq \r(cs x-1).


    解 (1)函数的定义域为R,关于原点对称.


    ∵f(-x)=sin(-x)cs(-x)


    =-sin xcs x=-f(x),


    ∴f(x)=sin xcs x为奇函数.


    (2)函数应满足1-sin x≠0,


    ∴函数的定义域为eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\| (\a\vs4\al\c1(x≠2kπ+\f(π,2),k∈Z)))),显然定义域不关于原点对称,


    ∴f(x)=eq \f(cs x,1-sin x)为非奇非偶函数.


    (3)由eq \b\lc\{\rc\ (\a\vs4\al\c1(1-cs x≥0,,cs x-1≥0,))得cs x=1,


    ∴函数的定义域为{x|x=2kπ,k∈Z},定义域关于原点对称.


    当cs x=1时,f(-x)=0,f(x)=±f(-x).


    ∴f(x)=eq \r(1-cs x)+eq \r(cs x-1)既是奇函数又是偶函数.


    反思感悟 (1)判断函数奇偶性应把握好的两个方面:


    一看函数的定义域是否关于原点对称;


    二看f(x)与f(-x)的关系.


    (2)对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.


    提醒:研究函数性质应遵循“定义域优先”的原则.


    跟踪训练2 下列函数中周期为eq \f(π,2),且为偶函数的是( )


    A.y=sin 4x B.y=cs eq \f(1,4)x


    C.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x+\f(π,2))) D.y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)x-\f(π,2)))


    答案 C


    解析 显然周期为eq \f(π,2)的有A和C,


    又因为y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(4x+\f(π,2)))=cs 4x是偶函数,故选C.





    三、三角函数的奇偶性与周期性的综合应用


    例3 定义在R上的函数f(x)既是偶函数,又是周期函数,若f(x)的最小正周期为π,且当x∈eq \b\lc\[\rc\)(\a\vs4\al\c1(0,\f(π,2)))时,f(x)=sin x,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,3)))等于( )


    A.-eq \f(1,2) B.eq \f(1,2) C.-eq \f(\r(3),2) D.eq \f(\r(3),2)


    答案 D


    解析 f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,3)-π))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)-π))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))=sin eq \f(π,3)=eq \f(\r(3),2).


    延伸探究


    1.若本例中“偶”变“奇”,其他条件不变,求f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,3)))的值.


    解 f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,3)π))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))=-f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))=-sin eq \f(π,3)=-eq \f(\r(3),2).


    2.若本例中函数的最小正周期变为eq \f(π,2),其他条件不变,求f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(17,6)π))的值.


    解 因为f(x)的最小正周期是eq \f(π,2),


    所以f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(17,6)π))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-3π+\f(π,6)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-6×\f(π,2)+\f(π,6)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=eq \f(1,2).


    反思感悟 三角函数周期性与奇偶性的解题策略


    (1)探求三角函数的周期,常用方法是公式法,即将函数化为y=Asin(ωx+φ)或y=Acs(ωx+φ)的形式,再利用公式求解.


    (2)判断函数y=Asin(ωx+φ)或y=Acs(ωx+φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y=Asin ωx(Aω≠0)或y=Acs ωx(Aω≠0)其中的一个.


    跟踪训练3 已知f(x)是以π为周期的偶函数,且x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))时,f(x)=1-sin x,求当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(5,2)π,3π))时f(x)的解析式.


    解 x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(5,2)π,3π))时,3π-x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2))),


    因为x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))时,f(x)=1-sin x,


    所以f(3π-x)=1-sin(3π-x)=1-sin x.


    又f(x)是以π为周期的偶函数,


    所以f(3π-x)=f(-x)=f(x),


    所以f(x)的解析式为f(x)=1-sin x,x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(5,2)π,3π)).








    1.下列函数中,周期为eq \f(π,2)的是( )


    A.y=sin x B.y=sin 2x


    C.y=cs eq \f(x,2) D.y=cs 4x


    答案 D


    2.函数f(x)=sin(-x)的奇偶性是( )


    A.奇函数


    B.偶函数


    C.既是奇函数又是偶函数


    D.非奇非偶函数


    答案 A


    解析 由于x∈R,且f(-x)=sin x=-sin(-x)=-f(x),


    所以f(x)为奇函数.


    3.已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(πx-\f(π,2)))-1,则下列命题正确的是( )


    A.f(x)是周期为1的奇函数


    B.f(x)是周期为2的偶函数


    C.f(x)是周期为1的非奇非偶函数


    D.f(x)是周期为2的非奇非偶函数


    答案 B


    解析 f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(πx-\f(π,2)))-1=-cs πx-1,


    从而函数为偶函数,且T=eq \f(2π,π)=2.


    4.函数f(x)=eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(πx,2)-\f(π,4))),x∈R的最小正周期为________.


    答案 4


    解析 由已知得f(x)的最小正周期T=eq \f(2π,\f(π,2))=4.


    5.若函数y=f(x)是定义在R上的周期为3的奇函数且f(1)=3,则f(5)=________.


    答案 -3


    解析 由已知得f(x+3)=f(x),f(-x)=-f(x),


    所以f(5)=f(2)=f(-1)=-f(1)=-3.





    1.知识清单:


    (1)周期函数的概念,三角函数的周期;


    (2)三角函数的奇偶性;


    (3)周期性、奇偶性的应用.


    2.方法归纳:数形结合.


    3.常见误区:函数y=Asin(ωx+φ)或y=Acs(ωx+φ)(其中A,ω,φ是常数,且A≠0,ω≠0)的周期为T=eq \f(2π,|ω|).








    1.下列函数中最小正周期为π的偶函数是( )


    A.y=sin eq \f(x,2) B.y=cs eq \f(x,2)


    C.y=cs x D.y=cs 2x


    答案 D


    解析 A中函数是奇函数,B,C中函数的周期不是π,只有D符合题目要求.


    2.设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则函数y=f(x)的图象是( )








    答案 B


    解析 由f(-x)=f(x),


    则f(x)是偶函数,图象关于y轴对称.


    由f(x+2)=f(x),


    则f(x)的周期为2.故选B.


    3.函数y=4sin(2x-π)的图象关于( )


    A.x轴对称 B.原点对称 C.y轴对称 D.直线x=eq \f(π,2)对称


    答案 B


    解析 y=4sin(2x-π)=-4sin 2x是奇函数,其图象关于原点对称.


    4.函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,2)+\f(π,2)))的奇偶性是( )


    A.奇函数 B.偶函数


    C.非奇非偶函数 D.既是奇函数也是偶函数


    答案 B


    解析 y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(x,2)+\f(π,2)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-\f(x,2)))=cs eq \f(x,2),故为偶函数.


    5.函数f(x)=sin(2x+φ)为R上的奇函数,则φ的值可以是( )


    A.eq \f(π,4) B.eq \f(π,2) C.π D.eq \f(3π,2)


    答案 C


    解析 要使函数f(x)=sin(2x+φ)为R上的奇函数,需φ=kπ,k∈Z.故选C.


    6.函数f(x)是以2为周期的函数,且f(2)=3,则f(6)=________.


    答案 3


    解析 ∵函数f(x)是以2为周期的函数,且f(2)=3,


    ∴f(6)=f(2×2+2)=f(2)=3.


    7.关于x的函数f(x)=sin(x+φ)有以下说法:


    ①对任意的φ,f(x)都是非奇非偶函数;


    ②存在φ,使f(x)是偶函数;


    ③存在φ,使f(x)是奇函数;


    ④对任意的φ,f(x)都不是偶函数.


    其中错误的是________(填序号).


    答案 ①④


    解析 当φ=0时,f(x)=sin x,是奇函数,


    当φ=eq \f(π,2)时,f(x)=cs x是偶函数.


    8.若f(x)为奇函数,当x>0时,f(x)=cs x-sin x,当x<0时,f(x)的解析式为_______.


    答案 f(x)=-cs x-sin x


    解析 x<0时,-x>0,f(-x)=cs(-x)-sin(-x)=cs x+sin x,


    因为f(x)为奇函数,


    所以f(x)=-f(-x)=-cs x-sin x,


    即x<0时,f(x)=-cs x-sin x.


    9.判断下列函数的奇偶性.


    (1)f(x)=lg(sin x+eq \r(1+sin2x));


    (2)f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3x,4)+\f(3π,2))).


    解 (1)因为1+sin2x>sin2x,


    所以eq \r(1+sin2x)>|sin x|≥-sin x,


    所以sin x+eq \r(1+sin2x)>0,


    所以函数f(x)的定义域为R.


    f(-x)=lg[sin(-x)+eq \r(1+sin2-x)]


    =lg(-sin x+eq \r(1+sin2x))


    =lgeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,sin x+\r(1+sin2x))))


    =-lg(sin x+eq \r(1+sin2x))=-f(x),


    所以f(x)为奇函数.


    (2)f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3x,4)+\f(3π,2)))=-cs eq \f(3x,4),x∈R.


    又f(-x)=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3x,4)))=-cs eq \f(3x,4)=f(x),


    所以函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3x,4)+\f(3π,2)))是偶函数.


    10.已知函数y=eq \f(1,2)sin x+eq \f(1,2)|sin x|.


    (1)画出函数的简图;


    (2)此函数是周期函数吗?若是,求其最小正周期.


    解 (1)y=eq \f(1,2)sin x+eq \f(1,2)|sin x|=eq \b\lc\{\rc\ (\a\vs4\al\c1(sin x,x∈[2kπ,2kπ+π],k∈Z,,0,x∈[2kπ-π,2kπ],k∈Z,))


    图象如图所示:





    (2)由图象知该函数是周期函数,且最小正周期是2π.





    11.设f(x)是定义域为R,最小正周期为eq \f(3π,2)的函数,若f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(cs x,-\f(π,2)≤x≤0,,sin x,0

    A.1 B.eq \f(\r(2),2) C.0 D.-eq \f(\r(2),2)


    答案 B


    解析 f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(15π,4)))=f eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3π,2)×-3+\f(3π,4)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,4)))=sin eq \f(3π,4)=eq \f(\r(2),2).


    12.函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(k,4)x+\f(π,3)))(k>0)的最小正周期不大于2,则正整数k的最小值应是( )


    A.10 B.11 C.12 D.13


    答案 D


    解析 因为T=eq \f(2π,\f(k,4))=eq \f(8π,k)≤2,所以k≥4π,


    又k∈N*,所以正整数k的最小值为13.


    13.已知函数f(x)=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)+φ))是奇函数,则φ∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,2),\f(π,2)))时,φ的值为________.


    答案 -eq \f(π,4)


    解析 由已知eq \f(π,4)+φ=kπ(k∈Z),


    ∴φ=kπ-eq \f(π,4)(k∈Z),


    又∵φ∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,2),\f(π,2))),


    ∴k=0时,φ=-eq \f(π,4)符合条件.


    14.已知函数f(x)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,3))),则f(x)的最小正周期是______;f(x)的对称中心是______.


    答案 4π eq \b\lc\(\rc\)(\a\vs4\al\c1(2kπ+\f(π,3),0)),k∈Z


    解析 由f(x)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,3))),得T=eq \f(2π,\f(1,2))=4π;令eq \f(x,2)+eq \f(π,3)=kπ+eq \f(π,2),求得x=2kπ+eq \f(π,3),k∈Z,可得f(x)的对称中心是eq \b\lc\(\rc\)(\a\vs4\al\c1(2kπ+\f(π,3),0)),k∈Z.





    15.函数y=eq \b\lc\|\rc\|(\a\vs4\al\c1(sin\f(x,2)))的最小正周期是________.


    答案 2π


    解析 ∵y=sin eq \f(x,2)的最小正周期为T=4π,而y=eq \b\lc\|\rc\|(\a\vs4\al\c1(sin \f(x,2)))的图象是把y=sin eq \f(x,2)的图象在x轴下方的部分翻折到x轴上方,


    ∴y=eq \b\lc\|\rc\|(\a\vs4\al\c1(sin \f(x,2)))的最小正周期为T=2π.


    16.已知函数f(x)对于任意实数x满足条件f(x+2)=-eq \f(1,fx)(f(x)≠0).


    (1)求证:函数f(x)是周期函数;


    (2)若f(1)=-5,求f(f(5))的值.


    (1)证明 ∵f(x+2)=-eq \f(1,fx),


    ∴f(x+4)=-eq \f(1,fx+2)=-eq \f(1,-\f(1,fx))=f(x),


    ∴f(x)是周期函数,4就是它的一个周期,


    (2)解 ∵4是f(x)的一个周期.


    ∴f(5)=f(1)=-5,


    ∴f(f(5))=f(-5)=f(-1)


    =eq \f(-1,f-1+2)=eq \f(-1,f1)=eq \f(1,5).
    相关学案

    人教A版 (2019)必修 第一册5.4 三角函数的图象与性质第1课时学案设计: 这是一份人教A版 (2019)必修 第一册5.4 三角函数的图象与性质第1课时学案设计,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。

    人教A版 (2019)必修 第一册第五章 三角函数5.4 三角函数的图象与性质优秀第1课时学案及答案: 这是一份人教A版 (2019)必修 第一册第五章 三角函数5.4 三角函数的图象与性质优秀第1课时学案及答案,共11页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    2021学年5.4 三角函数的图象与性质第1课时学案: 这是一份2021学年5.4 三角函数的图象与性质第1课时学案,共11页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020年高中数学新教材同步必修第一册 第5章 5.4.2 第1课时 周期性与奇偶性 学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map