|试卷下载
终身会员
搜索
    上传资料 赚现金
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)
    立即下载
    加入资料篮
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)01
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)02
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)

    展开
    这是一份【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版),共34页。

    专题3.2 一元一次不等式(组)应用题 五大题型专项讲练一元一次不等式(组)的应用题应用题在中考中占据着重要地位,也是学生必须掌握的一块内容,该份资料就一元一次不等式(组)不等式的应用题:分配不足问题、方案问题、费用优化问题、利润问题等问题进行梳理及对应试题分析,方便掌握。不等式的应用题,与等式应用题类似,主要思路为:1)根据题意,列写不等关系式;2)设未知数,使之方便表示不等关系式;3)根据不等关系,列写不等关系式;4)解不等式求解问题。题型1. 分配不足问题不等式应用题从另一个角度可分为两大类:①含有明确的不等词(不少于、多余、不超过……):将不等词化为不等号,以不等号的具体实际含义列出不等式;②不含有明确的不等词:根据题意中的实际意义列不等式。例1.(2022·浙江·八年级阶段练习)某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为(  )A.24人 B.23人 C.22人 D.不能确定【答案】C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C.【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.变式1.(2022·成都市·八年级期中)安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.【答案】5或6【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:.又为正整数,或6.故答案为:5或6.【点睛】本题考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.例2.(2022•市中区八年级期中)某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?解:设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)﹣5(x﹣1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.变式2.(2022·江苏·七年级专题练习)小明和小亮共下了10盘围棋,小明胜一盘记1分,小亮胜一盘记3分,当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高过小明,小亮胜(       )盘?(已知比赛中没有出现平局)A.1 B.2 C.3 D.4【答案】C【分析】本题可设小亮赢了x盘,然后列出一元一次不等式组,化简后得出x的取值范围,找出取值范围中的整数即可得出本题的答案.【详解】解:设下完10盘棋后小亮胜了x盘.根据题意得,解得 .∴所列不等式组的整数解为x=3.答:小亮胜了3盘.故选:C.【点睛】本题考查的是一元一次不等式的运用.解此类题目要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.题型2. 方案问题解决此类问题,依旧先按照普通不等式组解决问题的题型进行,最终会得到一个取值范围。那么提出的方案只需要符合这个取值范围即可。例1.(2022·重庆·七年级期中)“学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?【答案】(1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案【分析】(1)设政府对划线新增一个停车位补贴x元,对建设改造新增一个停车位补贴y元,根据“划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设老旧小区划线新增m个停车位,则建设改造新增(100-m)个停车位,根据“建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出老旧小区新增停车位方案的个数.【详解】(1)设政府对划线新增一个停车位补贴元,对建设改造新增一个停车位补贴元,依题意得:,解得:x=500y=2000.答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增个停车位,则建设改造新增个停车位,依题意得:,解得:.又为整数,可以为38,39,40,老旧小区新增停车位共有3种方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.变式1.(2022·浙江·八年级阶段练习)某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.【答案】(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为元,乙为元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为元,乙为元,由题意得.,解得答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货台,则乙进货台,由题意可知解得 故或9或10,则共有种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.例2.(2022·江苏·七年级专题练习)某市七年级“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划到某商场采购一批足球和排球,该商场的每个足球与每个排球的标价之和为90元;若按标价购买4个足球、5个排球,则共需400元.(1)该商场足球和排球的标价分别是多少元?(2)若该商场有两种优惠方式:方式一:足球和排球一律按标价8折优惠;方式二:每购买2个足球,赠送1个排球(单买排球按标价计算).①若学校需采购足球、排球各50个,你认为应该采用哪种优惠方式购买合算?②若学校计划在此商场采购足球、排球共100个,其中足球数量为偶数且不超过48个,并且用方式二购买的费用不超过用方式一购买的费用,请问学校有几种采购方案,并说明理由.【答案】(1)该商场足球的标价为50元个,排球的标价为40元个;(2)①采用优惠方式二购买合算;②学校有2种采购方案.【分析】(1)设该商场足球的标价为元个,排球的标价为元个,根据“该商场的每个足球与每个排球的标价之和为90元;若按标价购买4个足球、5个排球,则共需400元”,即可得出关于,的二元一次方程组,解之即可得出该商场足球和排球的标价;(2)①利用总价单价数量,结合两种优惠方式的优惠策略,即可分别求出采用两次优惠方式所需费用,比较后即可得出采用优惠方式二购买合算;②设购买足球个,则购买排球个,根据“购买足球的数量不超过48个,并且用方式二购买的费用不超过用方式一购买的费用”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数且为偶数,即可得出采购方案的个数.【详解】解:(1)设该商场足球的标价为元个,排球的标价为元个,依题意得:,解得:.答:该商场足球的标价为50元个,排球的标价为40元个.(2)①采用优惠方式一的费用为(元;采用优惠方式二的费用为(元.答:采用优惠方式二购买合算.②设购买足球个,则购买排球个,依题意得:,解得:.又为正整数,且为偶数,可以取46,48,学校有2种采购方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①利用总价单价数量,分别求出采用两种优惠方式所需费用;②根据各数量之间的关系,正确列出一元一次不等式组.变式2.(2022·江苏·七年级专题练习)为缓解并最终解决能源的供需矛盾,改善日益严峻的环境状况,我国大力提倡发展新能源.新能源汽车市场发展迅猛,国家不仅在购买新能源车方面有补贴,而且还有免缴购置税等利好政策.某汽车租赁公司准备购买、两种型号的新能源汽车10辆.新能源汽车厂商提供了如下两种购买方案:(1)、两种型号的新能源汽车每辆的价格各是多少万元?(2)为了支持新能源汽车产业的发展,国家对新能源汽车发放一定的补贴.已知国家对、两种型号的新能源汽车补贴资金分别为每辆3万元和4万元.通过测算,该汽车租赁公司在此次购车过程中,可以获得国家补贴资金不少于34万元,公司需要支付资金不超过145万元,请你通过计算求出有几种购买方案.【答案】(1)型号新能源汽车每辆的价格是15万元,型号新能源汽车每辆的价格是20万元(2)共有三种购车方案,方案一:购买型号新能源汽车4辆,则购买型号新能源汽车6辆;方案二:购买型号新能源汽车5辆,则购买型号新能源汽车5辆;方案三:购买型号新能源汽车6辆,则购买型号新能源汽车4辆【分析】(1)设A种型号的新能源汽车每辆的价格为x万元,B种型号的新能源汽车每辆的价格为y万元,根据总价=单价×数量结合汽车厂商提供的两种购买方案,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该汽车租赁公司购进A种型号的新能源汽车a辆,则购进B种型号的新能源汽车(10-a)辆,根据国家补贴资金不少于34万元及公司需要支付资金不超过145万元,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再结合a为整数即可得出各购买方案.(1)设型号新能源汽车每辆的价格是万元,型号新能源汽车每辆的价格是万元.由题意得:解得:.型号新能源汽车每辆的价格是15万元,型号新能源汽车每辆的价格是20万元.(2)设购买型号新能源汽车辆,则购买型号新能源汽车辆.由题意得:解得:.∵a是整数,∴a=4,5或6∴共有三种购车方案方案一:购买型号新能源汽车4辆,则购买型号新能源汽车6辆方案二:购买型号新能源汽车5辆,则购买型号新能源汽车5辆方案三:购买型号新能源汽车6辆,则购买型号新能源汽车4辆【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.题型3. 利润问题例1.(2022·重庆八年级阶段练习)节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为,则该单位一共有________名员工.【答案】140【分析】设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可.【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,∴甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,∴甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,∴,∵预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,∴,即,解得:,∵m为正整数,∴m的值可能为36、37、38、39、40、41、42、43、44,∵n为正整数,∴是6的倍数,∴,∴该单位一共有80+40+20=140(名);故答案为140.【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键.变式1.(2022·重庆巴蜀中学八年级期末)“寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A礼盒混装2千克广味香肠,2千克川味香肠;B礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A、B两种礼盒的总成本最多为______元.【答案】36250【分析】设每千克川味香肠的成本为元,每千克广味香肠的成本为元,先根据利润率的计算公式可得,从而可分别求出每个礼盒的实际成本和核算出的成本,再设礼盒的数量为个,礼盒的数量为个,根据“核算出的成本比实际成本少了500元”可得,从而可得,然后结合求出超巿混装两种礼盒的总成本的最大值即可得.【详解】解:设每千克川味香肠的成本为元,每千克广味香肠的成本为元,由题意得:,即,则每个礼盒的实际成本和核算出的成本均为(元),每个礼盒的实际成本为(元),核算出的成本为(元),设礼盒的数量为个,礼盒的数量为个,由题意得:,即,联立,解得,则超巿混装两种礼盒的总成本为,即超巿混装两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.例2.(2022·浙江新昌·八年级期末)某种家用电器的进价为每件800元,以每件1200元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的______折出售.【答案】七【分析】设按标价的x折出售,利用利润=售价-成本,结合利润不低于5%,即可得出关于x的一元一次不等式,解出不等式取最小值即可.【详解】解:设按标价的x折出售由题意得: 解得: 最低可按标价的7折出售 故答案为7【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.变式2.(2022·上海松江·期末)今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.(1)问该商店当初购进A、B两种型号文具各多少个?(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?【答案】(1)该商店当初购进A型号文具100个,B型号文具80个(2)1.5元【分析】(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解析】(1)解:(1)设该商店当初购进A型号文具x个,B型号文具y个,依题意得:, 解得:. 答:该商店当初购进A型号文具100个,B型号文具80个;(2)(2)设这两种型号的文具每件降m元,依题意得:600﹣(100+80)×20%m≥546,解得:m≤1.5.答:这两种型号的文具每件最多降1.5元.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.题型4. 费用优化问题费用优化问题是在方案问题上进一步深化,再求出费用(结果)最大(小)的方案。解题方法为:先按照方案问题,求解出所有合适的方案,在求出各个方案的费用(结果),比较得出费用最大(小)利润(结果)的方案。例1.(2022·浙江嘉兴市·八年级期末)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.【答案】(1)有3种购买方案:第一种是购买3台A型污水处理设备,7台B型污水处理设备;第二种是购买4台A型污水处理设备,6台B型污水处理设备;第三种是购买5台A型污水处理设备,5台B型污水处理设备;(2)购买3台A型污水处理设备,7台B型污水处理设备更省钱【分析】(1)设购买污水处理设备A型号x台,则购买B型号(10﹣x)台,由不等量关系购买A型号的费用+购买B型号的费用≤136;A型号每月处理的污水总量+B型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A型号x台,则购买B型号(10﹣x)台,根据题意,得, 解这个不等式组,得:.∵x是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A型污水处理设备,7台B型污水处理设备;第二种是购买4台A型污水处理设备,6台B型污水处理设备;第三种是购买5台A型污水处理设备,5台B型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A型号3台,B型号7台.答:购买3台A型污水处理设备,7台B型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.变式1.(2022·沙坪坝区·八年级月考)某木板加工厂将购进的A型、B型两种木板加工成C型,D型两种木板出售,已知一块A型木板的进价比一块B型木板的进价多10元,且购买2块A型木板和3块B型木板共花费220元.(1)A型木板与B型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A型木板、B型木板共200块,若一块A型木板可制成2块C型木板、1块D型木板;一块B型木板可制成1块C型木板、2块D型木板,且生产出来的C型木板数量不少于D型木板的数量的.①该木板加工厂有几种进货方案?②若C型木板每块售价30元,D型木板每块售价25元,且生产出来的C型木板、D型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?【答案】(1)A型木板的进价为50元/块,B型木板的进价为40元/块;(2)①该木板加工厂有4种进货方案;方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块.②方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【分析】(1)设A型木板的进价为x元/块,B型木板的进价为y元/块,根据“一块A型木板的进价比一块B型木板的进价多10元,购买2块A型木板和3块B型木板共花费220元”,即可得出关于x,y的二元一次方程组,解之即可得出结论; (2)①设购入A型木板m块,则购入B型木板(200-m)块,由购进木板的总资金不超过8780元且生产出来的C型木板数量不少于D型木板的数量的,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各进货方案; ②根据利润=销售收入-进货成本,分别求出4个进货方案的销售利润,比较后即可得出结论.【详解】解:(1)设A型木板的进价为x元/块,B型木板的进价为y元/块, 依题意,得:, 解得:. 答:A型木板的进价为50元/块,B型木板的进价为40元/块. (2)①设购入A型木板m块,则购入B型木板(200-m)块, 依题意,得:, 解得:75≤m≤78. ∵m为整数, ∴m=75,76,77,78. ∴该木板加工厂有4种进货方案,方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块. ②方案1获得的利润为(75×2+125)×30+(75+125×2)×25-75×50-125×40=7625(元), 方案2获得的利润为(76×2+124)×30+(76+124×2)×25-76×50-124×40=7620(元), 方案3获得的利润为(77×2+123)×30+(77+123×2)×25-77×50-123×40=7615(元), 方案4获得的利润为(78×2+122)×30+(78+122×2)×25-78×50-122×40=7610(元). ∵7625>7620>7615>7610, ∴方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②利用利润=销售收入-进货成本,分别求出4个进货方案的销售利润.变式2.(2022·吉林前郭尔罗斯·七年级期末)某商店需要购进甲、乙两种商品共160件,其进价和售价如表:(1)若商店计划销售完这批商品后能获利1100元.则甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金不多于4300元,且销售完这批商品获利多于1260元,商店有哪几种购货方案?哪种购货方案销售利润最大?请说明理由.【答案】(1)应购进甲种商品100件,乙种商品60件;(2)商店共同3种购货方案,方案1:购进甲种商品65件,乙种商品95件;方案2:购进甲种商品66件,乙种商品94件;方案3:购进甲种商品67件,乙种商品93件.方案1的销售利润最大,理由见解析.【分析】(1)设应购进甲种商品x件,乙种商品y件,根据“购进甲、乙两种商品共160件,且全部销售完能获利1100元”,即可得出关于x,y的二元一次方程组,解之即可得出购进甲、乙两种商品的数量;(2)设购进甲种商品m件,则购进乙种商品(160-m)件,根据“投入资金不少于4300元,且销售完批商品获利多于1260元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购货方案,利用销售总利润=每件的销售利润×销售数量,可分别求出各方案可获得的销售利润,比较后可得出购货方案1销售利润最大.【详解】解:(1)设应购进甲种商品x件,乙种商品y件,依题意得:,解得:.答:应购进甲种商品100件,乙种商品60件;(2)设购进甲种商品m件,则购进乙种商品(160﹣m)件,依题意得:,解得:65≤m<68.又∵m为正整数,∴m可以为65,66,67,∴商店共同3种购货方案,方案1:购进甲种商品65件,乙种商品95件;方案2:购进甲种商品66件,乙种商品94件;方案3:购进甲种商品67件,乙种商品93件.方案1的销售利润最大,理由如下:方案1的销售利润为(20﹣15)×65+(45﹣35)×95=1275(元);方案2的销售利润为(20﹣15)×66+(45﹣35)×94=1270(元);方案3的销售利润为(20﹣15)×67+(45﹣35)×93=1265(元).∵1275>1270>1265,∴购货方案1销售利润最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.题型5. 其他问题例1.(2022·江苏·七年级专题练习)中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.【答案】29【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:,∴,设两个食堂同时一共开放m个配餐窗口,依题意得:15my≥a+2a+15×(x+2x),解得:m≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.变式1.(2021·山东青州·八年级期末)小明要从甲地到乙地,两地相距2千米.已知小明步行的平均速度为100米/分,跑步的平均速度为200米/分,若要在不超过15分钟的时间内到达乙地,至少需要跑步多少分钟?设小明需要跑步x分钟,根据题意可列不等式为(  )A.200x+100(15﹣x)≥2000 B.200x+100(15﹣x)≤2000C.200x+100(15﹣x)≥2 D.100x+200(15﹣x)≥2【答案】A【分析】根据“跑步的路程+步行的路程≥2000米”可得不等式.【详解】解:设小明需要跑步x分钟,根据题意可列不等式为200x+100(15-x)≥2000,故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算其蕴含的不等式关系是解题的关键.变式2.(2022·河南·九年级专题练习)小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为 , ;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)【答案】(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过【分析】(1)第一天两人一共读了152-84=68页,故第三天页码之和=220+68=288页,第四天页码之和=288+68=356页;(2)小明每天读x页,小红每天读y页.由题意列得议程组,解方程组即可解决问题;(3)从第6天起,小明至少平均每天要比原来多读m页.由题意:84+28×5+5(28+m)-10×40≥0,解不等式即可解决问题.【解析】(1)解:第一天两人一共读了152-84=68页,故第三天页码之和=220+68=288页,第四天页码之和=288+68=356页,故答案为:288,356.(2)解:小明每天读x页,小红每天读y页,由题意 ,解得 ,答:小明每天读28页,小红每天读40页;(3)解:从第6天起,小明至少平均每天要比原来多读m页.由题意:84+28×5+5(28+m)-10×40≥0,解得m≥7.2,∵m是整数,∴m=8,∴小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过.【点睛】本题考查了一元一次不等式、二元一次方程组等知识,解题的关键是读懂表格中的信息,学会利用参数构建方程组或不等式解决问题.变式3.(2022·福建·厦门一中八年级期末)A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,判断乙能否在途中超过甲,请说明理由.【答案】(1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲.理由见解析【分析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,列不等式组求得乙的速度范围,进步计算即可判断.(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得,解得x=12.5,经检验x=12.5是分式方程的解,12.5×4=50.答:甲的速度是12.5千米/时,乙的速度是50千米/时;(2)解:乙能在途中超过甲.理由如下:设乙的速度是y千米/时,由题意,得,解得:443     0
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map