资料中包含下列文件,点击文件名可预览资料内容
还剩68页未读,
继续阅读
所属成套资源:新人教a版数学选择性必修第二册PPT课件+讲义
成套系列资料,整套一键下载
高中数学新教材选择性必修第二册课件+讲义 第5章 习题课 导数中的函数构造问题
展开
这是一份高中数学新教材选择性必修第二册课件+讲义 第5章 习题课 导数中的函数构造问题,文件包含高中数学新教材选择性必修第二册第5章习题课导数中的函数构造问题pptx、高中数学新教材选择性必修第二册第5章习题课导数中的函数构造问题教师版docx、高中数学新教材选择性必修第二册第5章习题课导数中的函数构造问题学生版docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
第5章 习题课 导数中的函数构造问题高中数学新教材选择性必修第二册高考政策|高中“新”课程,新在哪里?1、科目变化:外语语种增加,体育与健康必修。第一,必修课程,由国家根据学生全面发展需要设置,所有学生必须全部修习、全部考试。第二,选择性必修课程,由国家根据学生个性发展和升学考试需要设置。第三,选修课程,由学校根据实际情况统筹规划开设,学生自主选择修习。2、课程类别变化,必修课程、选择性必修课程将成为高考考查范围。在毕业总学分不变的情况下,对原必修课程学分进行重构,由必修课程学分、选择性必修课程学分组成,适当增加选修课程学分。3、学时和学分变化,高中生全年假期缩减到11周。4、授课方式变化,选课制度将全面推开。5、考试方式变化,高考统考科目由教育部命题,学业水平合格性、等级性考试由各省命题。1.了解导数中几种常见的构造函数的形式.2.会根据要求通过构造函数解决一些简单的问题.随堂演练课时对点练一、利用f(x)与x构造二、利用f(x)与ex构造三、利用f(x)与sin x,cos x构造一、利用f(x)与x构造例1 已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)f(x2-1)的解集是A.(0,1) B.(2,+∞)C.(1,2) D.(1,+∞)√解析 构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以x+10,x+1>0,解得x>2或x<-1(舍去),所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).延伸探究 把本例中的条件“f(x)<-xf′(x)”换为“f(x)(2x+1)f(x2+1).∵f(x)0,故g(x)在(0,+∞)上单调递增,由(x2+1)f(2x+1)>(2x+1)f(x2+1)得,即g(2x+1)>g(x2+1),即不等式(x2+1)f(2x+1)>(2x+1)f(x2+1)的解集为(0,2).反思感悟 用函数单调性比较大小或解不等式时常构造函数,常见的有(1)对于f′(x)>g′(x),构造h(x)=f(x)-g(x).(2)对于f′(x)+g′(x)>0,构造h(x)=f(x)+g(x).(3)对于f′(x)>a,构造h(x)=f(x)-ax.(4)对于xf′(x)+f(x)>0,构造h(x)=xf(x).(5)对于xf′(x)-f(x)>0,构造h(x)= .√二、利用f(x)与ex构造例2 已知f(x)为R上的可导函数,其导函数为f′(x),且对于任意的x∈R,均有f(x)+f′(x)>0,则A.e-2 021f(-2 021)f(0)B.e-2 021f(-2 021)f(0),e2 021f(2 021)>f(0)D.e-2 021f(-2 021)>f(0),e2 021f(2 021)0,所以函数h(x)在R上单调递增,故h(-2 021)h(0),即e2 021f(2 021)>f(0),故选A.延伸探究 把本例中的条件“f(x)+f′(x)>0”换为“f′(x)>f(x)”,比较e2 021f(-2 021)和f(0)的大小.因为对任意的x∈R,都有f′(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,所以h(-2 021)0,构造h(x)=exf(x).(2)对于f′(x)>f(x),构造h(x)= .跟踪训练2 (多选)已知函数f(x)的导函数为f′(x),且f′(x)2f(0) D.f(2)>e2f(0)√√所以g(x)在R上单调递减,又ln 2>0,2>0,所以f(ln 2)<2f(0),f(2)0,构造函数h(x)=f(x)sin x.(2)对于f′(x)sin x-f(x)cos x>0,构造函数h(x)= .(3)对于f′(x)cos x-f(x)sin x>0,构造函数h(x)=f(x)cos x.(4)对于f′(x)cos x+f(x)sin x>0,构造函数h(x)= .√解析 由已知,得f(x)为奇函数,由函数y=f(x)对于任意的x∈(0,π)满足f′(x)sin x>f(x)cos x,1.知识清单:(1)几种常见的构造形式.(2)掌握由导函数的结构形式构造原函数.2.方法归纳:构造法.3.常见误区:不能正确构造出符合题意的函数.12341.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的正数a,b,若ax-1的解集为A.{x|-22} D.{x|x>2}√解析 令g(x)=f(x)-(x-1),则g′(x)=f′(x)-1<0,所以g(x)在R上单调递减.又f(2)=1,所以g(2)=f(2)-(2-1)=0.由f(x)>x-1,得g(x)>0,解得x<2.123412341234解析 ∵f(x)cos x0,123412345678910111213141516√12345678910111213141516故h(x)<0的解集为{x|x>1}.123456789101112131415162.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)√12345678910111213141516所以h(x)在(0,+∞)上单调递减,根据对称性知h(x)在(-∞,0)上单调递增,又f(-1)=0,所以f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).123456789101112131415163.已知函数f(x)的定义域为R,f′(x)为f(x)的导函数,且f(x)+(x-1)f′(x)>0,则A.f(1)=0 B.f(x)<0C.f(x)>0 D.(x-1)f(x)<0√12345678910111213141516解析 令g(x)=(x-1)f(x),则g′(x)=f(x)+(x-1)f′(x)>0,所以g(x)在R上是增函数,又因为g(1)=0,所以当x>1时,g(x)=(x-1)f(x)>0;当x<1时,g(x)=(x-1)f(x)<0,所以当x≠1时,f(x)>0,又f(1)+(1-1)f′(1)=f(1)>0,所以ABD错误,C正确.123456789101112131415164.已知定义在R上的函数f(x)满足f(x)<-f′(x),则下列式子成立的是A.f(2 020)>ef(2 021) B.f(2 020)f(2 021) D.ef(2 020)g(2 021),即e2 020f(2 020)>e2 021f(2 021)⇒f(2 020)>ef(2 021).12345678910111213141516√12345678910111213141516∴f(x)是奇函数,12345678910111213141516123456789101112131415166.(多选)已知f(x)为(0,+∞)上的可导函数,且(x+1)·f′(x)>f(x),则下列不等式一定成立的是A.3f(4)<4f(3) B.4f(4)>5f(3)C.3f(3)<4f(2) D.3f(3)>4f(2)√√12345678910111213141516解析 由(x+1)f′(x)>f(x),得(x+1)f′(x)-f(x)>0,∴g(x)在(0,+∞)上单调递增,∴g(2)0,所以g′(x)>0,所以g(x)在(0,π)上单调递增,所以a0,∴h′(x)>0,1234567891011121314151610.已知函数f(x)= x2-2aln x+(a-2)x.(1)当a=1时,求函数f(x)在[1,e]上的最小值和最大值;∴当x∈[1,2)时,f′(x)<0;当x∈(2,e]时,f′(x)>0.∴f(x)在[1,2)上单调递减,在(2,e]上单调递增.∴当x=2时,f(x)取得最小值,其最小值为f(2)=-2ln 2.123456789101112131415161234567891011121314151612345678910111213141516不妨设0f(x1)-ax1.令g(x)=f(x)-ax,则由此可知g(x)在(0,+∞)上单调递增,12345678910111213141516由此可得g′(x)≥0在(0,+∞)上恒成立,1234567891011121314151611.设f(x),g(x)是定义域为R的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当af(b)g(b) B.f(x)g(b)>f(b)g(x)C.f(x)g(a)>f(a)g(x) D.f(x)g(x)>f(a)g(a)√12345678910111213141516由f′(x)g(x)-f(x)g′(x)<0,得F′(x)<0,所以F(x)在R上单调递减,因为af(b)g(x).1234567891011121314151612.设函数f(x)的定义域为R,f′(x)是其导函数,若3f(x)+f′(x)>0,f(0)=1,则不等式f(x)>e-3x的解集是A.(0,+∞) B.(1,+∞)C.(-∞,0) D.(0,1)√12345678910111213141516解析 令g(x)=e3xf(x),则g′(x)=3e3xf(x)+e3xf′(x),因为3f(x)+f′(x)>0,所以3e3xf(x)+e3xf′(x)>0,所以g′(x)>0,所以函数g(x)=e3xf(x)在R上是增函数,又f(x)>e-3x可化为e3xf(x)>1,且g(0)=e3×0f(0)=1,所以g(x)>g(0),解得x>0,所以不等式f(x)>e-3x的解集是(0,+∞).1234567891011121314151613.函数f(x)的导函数为f′(x),对任意的正数x都有2f(x)>xf′(x)成立,则A.9f(2)>4f(3)B.9f(2)<4f(3)C.9f(2)=4f(3)D.9f(2)与4f(3)的大小不确定√12345678910111213141516解析 由2f(x)>xf′(x),得xf′(x)-2f(x)<0,因为x是正数,所以x3>0,又xf′(x)-2f(x)<0,所以g′(x)<0,所以g(x)在(0,+∞)上单调递减,即9f(2)>4f(3).12345678910111213141516(-1,0)∪(1,+∞)12345678910111213141516即g′(x)>0,∴g(x)在(0,+∞)上单调递增.又f(1)=0,∴g(1)=f(1)=0,12345678910111213141516∴在(0,+∞)上,g(x)>0的解集为(1,+∞),g(x)<0的解集为(0,1).∵f(x)为奇函数,∴g(x)为偶函数,∴在(-∞,0)上,g(x)>0的解集为(-∞,-1),g(x)<0的解集为(-1,0).由x2f(x)>0,得f(x)>0(x≠0).又f(x)>0的解集为(-1,0)∪(1,+∞),∴不等式x2f(x)>0的解集为(-1,0)∪(1,+∞).1234567891011121314151615.已知函数f(x)的定义域为R,其导函数为f′(x),且3f(x)-f′(x)>0在R上恒成立,则下列不等式一定成立的是A.f(1)e3f(0) D.f(1)>e2f(0)√因为3f(x)-f′(x)>0在R上恒成立,所以g′(x)<0在R上恒成立,故g(x)在R上单调递减,123456789101112131415161234567891011121314151612345678910111213141516①当a≥0时,f′(x)<0在(0,+∞)上恒成立,故f(x)在(0,+∞)上单调递减.②当a<0时,由f′(x)>0,得0-a.即f(x)在(0,-a)上单调递增,在(-a,+∞)上单调递减,综上,当a≥0时,f(x)在(0,+∞)上单调递减;当a<0时,f(x)在(0,-a)上单调递增,在(-a,+∞)上单调递减.12345678910111213141516证明 因为f(x1)=f(x2)=2,12345678910111213141516即x1ln x1+2x1-a=0,x2ln x2+2x2-a=0.设g(x)=xln x+2x-a,则g′(x)=ln x+3,1234567891011121314151612345678910111213141516课程结束高中数学新教材选择性必修第二册
第5章 习题课 导数中的函数构造问题高中数学新教材选择性必修第二册高考政策|高中“新”课程,新在哪里?1、科目变化:外语语种增加,体育与健康必修。第一,必修课程,由国家根据学生全面发展需要设置,所有学生必须全部修习、全部考试。第二,选择性必修课程,由国家根据学生个性发展和升学考试需要设置。第三,选修课程,由学校根据实际情况统筹规划开设,学生自主选择修习。2、课程类别变化,必修课程、选择性必修课程将成为高考考查范围。在毕业总学分不变的情况下,对原必修课程学分进行重构,由必修课程学分、选择性必修课程学分组成,适当增加选修课程学分。3、学时和学分变化,高中生全年假期缩减到11周。4、授课方式变化,选课制度将全面推开。5、考试方式变化,高考统考科目由教育部命题,学业水平合格性、等级性考试由各省命题。1.了解导数中几种常见的构造函数的形式.2.会根据要求通过构造函数解决一些简单的问题.随堂演练课时对点练一、利用f(x)与x构造二、利用f(x)与ex构造三、利用f(x)与sin x,cos x构造一、利用f(x)与x构造例1 已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)f(x2-1)的解集是A.(0,1) B.(2,+∞)C.(1,2) D.(1,+∞)√解析 构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以x+1
相关资料
更多