搜索
    上传资料 赚现金
    高中数学必修第一册人教A版(2019)4.5.2《用二分法求方程的近似解》教学设计(表格式)
    立即下载
    加入资料篮
    高中数学必修第一册人教A版(2019)4.5.2《用二分法求方程的近似解》教学设计(表格式)01
    高中数学必修第一册人教A版(2019)4.5.2《用二分法求方程的近似解》教学设计(表格式)02
    高中数学必修第一册人教A版(2019)4.5.2《用二分法求方程的近似解》教学设计(表格式)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册4.5 函数的应用(二)表格教案

    展开
    这是一份人教A版 (2019)必修 第一册4.5 函数的应用(二)表格教案,共6页。

    《用二分法求方程的近似解》教学设计
    教学环节
    教学内容
    师生互动
    设计意图
    提出问题
    引入课题
    问题:一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在定理判定根的存在性,而没有公式,求根的操作就无法下手,如何求得方程的根呢?
    (1)函数在区间内有零点.
    (2)如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.
    (3)通过“取中点”的方法逐步缩小零点所在的范围.
    (4)取区间的中点2.5,用计算器算得.因为,所以零点在区间内.再取区间的中点2.75,用计算器算得.因为,所以零点在区间内.
    (5)由于,所以零点所在的范围变小了.如果重复上述步骤,那么零点所在的范围会越来越小(如下表).

    (6)例如,当精确度为0.01时,由于
    ,所以,我们可以将作为函数零点的近似值,也即方程
    的近似解.
    师:怎样求方程的根?
    引导学生观察图象.

    生:方程的根在区间内.
    师:能否用缩小区间的方法逼近方程的根?
    生:应该可以.
    师:我们现在用一种常见的数学方法——二分法,共同探究已知方程的根.
    师生合作,借助计算机探求方程的近似解.





    由旧到新设疑、析疑导入课题,通过实例了解二分法,进一步师生合作尝试用二分法求近似根,提升学生的数学运算素养.

    概念形成
    1.对于在区间上图象连续不断且的函数,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
    2.给定精确度,用二分法求函数零点的近似值的一般步骤如下:
    (1)确定零点的初始区间,验证.
    (2)求区间的中点.
    (3)计算,并进一步确定零点所在的区间:
    ①若(此时),则就是函数的零点;
    ②若(此时),则令;
    ③若(此时),则令.
    (4)判断是否达到精确度:若,则得到零点近似值(或);否则重复步骤(2)~(4).
    教师给出二分法的概念,让学生理解.

    通过上面的求解过程,试着让学生自己总结二分法的解题步骤,有不对或遗漏的,教师随时补充.

    教师着重讲解零点所在区间的归属条件,避免学生出现选择区间上的错误.

    教师明确精确度的概念和判断方法,即“算法”何时结束的条件.


    由特殊到一般形成概念,归纳总结应用二分法的步骤.

    应用举例
    例 借助计算器或计算机用二分法求方程的近似解(精确度为0.1).
    解:原方程即,
    令,用计算器或计算机画出函数的图象(如下图),并列出它的对应值表(如下表).


    0
    1
    2
    3
    4
    5
    6
    7
    8

    -6
    -2
    3
    10
    21
    40
    75
    142
    273
    观察图或表,可知,说明这个函数在区间内存在零点.
    取区间的中点,用计算器算得.因为,所以.
    再取区间的中点,用计算器算得.因为,所以.
    同理可得,.
    由于,所以,原方程的近似解可取为1.375.
    师生合作应用二分法,遵循二分法的步骤求解,并借助函数图象检验.教师提醒学生注意精确度的要求.

    尝试体验二分法,培养学生应用二分法求方程的近似解的能力,提升数学运算素养.

    巩固练习
    1.借助计算器或计算机,用二分法求函数在区间内的零点(精确度为0.1).

    2.借助计算器或计算机,用二分法求方程在区间内的近似解(精确度为0.1).
    第1题按照二分法的步骤一步一步计算即可,注意精确度的要求,不要选错区间.
    1.解:由题设可知,,于是,所以,函数在区间内有一个零点.下面用二分法求函数在区间内的零点.
    取区间的中点,用计算器可算得.因为,所以.
    再取区间的中点,用计算器可算得.
    因为,所以.
    同理可得,.
    由0.1,所以原方程的近似解可取为0.625.
    第2题由于出现了对数计算,所以需要借助计算器来帮助简化运算,提高解题效率.
    2.解:原方程即,令,用计算器可算得,,于是,所以,这个方程在区间内有一个解.下面用二分法求方程在区间内的近似解.
    取区间的中点,用计算器可算得. 因为,所以.
    再取区间的中点,用计算器可算得.
    因为,所以.
    同理可得,.
    由于,所以原方程的近似解可取为2.562 5.

    进一步体验二分法,巩固应用二分法的方法与技巧及注意事项.

    归纳总结
    1.二分法的定义.
    2.给定精确度,用二分法求函数零点的近似值的步骤.
    课后作业
    教材第155页习题4.5第4,5题.

    板书设计
    4.5.2 用二分法求方程的近似解
    1.对于在区间上图象连续不断且的函数,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
    2.给定精确度,用二分法求函数零点的近似值的一般步骤如下:
    (1)确定零点的初始区间,验证.
    (2)求区间的中点.
    (3)计算,并进一步确定零点所在的区间:
    ①若(此时),则就是函数的零点;
    ②若(此时),则令;
    ③若(此时),则令.
    (4)判断是否达到精确度:若,则得到零点近似值(或);否则重复步骤(2)~(4)

    巩固练习

    小结
    1.二分法的定义
    2.给定精确度,用二分法求函数零点的近似值的步骤

    教学研讨
    本案例首先由教师通过提出问题引入课题,然后师生合作解决问题,从而使学生理解和掌握用二分法求方程近似解的基本步骤和注意事项,最后通过例题讲解和练习的跟踪检查,基本可以达到预想的效果,让学生多动手多动脑,教师把课堂还给了学生,把舞台让给了学生,教师充当“导演”的角色,还原了“一节真实的课堂”.
    相关教案

    人教A版 (2019)必修 第一册4.5 函数的应用(二)教案及反思: 这是一份人教A版 (2019)必修 第一册4.5 函数的应用(二)教案及反思,共6页。教案主要包含了引入问题,探讨方法,解决问题,实施方法,总结提炼,归纳方法,例题实践,熟悉方法,课堂互动练习题,课堂小结等内容,欢迎下载使用。

    【小单元教案】高中数学人教A版(2019)必修第一册--4.5.2 用二分法求方程的近似解(课时教学设计): 这是一份【小单元教案】高中数学人教A版(2019)必修第一册--4.5.2 用二分法求方程的近似解(课时教学设计),共6页。

    人教A版 (2019)必修 第一册4.5 函数的应用(二)教学设计: 这是一份人教A版 (2019)必修 第一册4.5 函数的应用(二)教学设计,共11页。教案主要包含了教材分析,学情分析,学习目标,教学重点,教学过程,布置作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学必修第一册人教A版(2019)4.5.2《用二分法求方程的近似解》教学设计(表格式)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map