数学六年级下册5 数学广角 (鸽巢问题)教案
展开
这是一份数学六年级下册5 数学广角 (鸽巢问题)教案,共4页。
《鸽巢问题》教学设计[学习目标]1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。[学习重点]引导学生把具体问题转化成“鸽巢问题”。[学习难点]找出“鸽巢问题”解决的窍门进行反复推理。[课前准备]1.课件[环节设计]序号环节目标学生活动和学法教师活动和教法1、复习引入1、回顾以前学习内容,2、复习铺垫。1、提问交流。2、独立完成复习内容:附12、教学新课1、教学新内容,独立探索,尝试,2、巩固提升练习。1、独立练习结合小组练习师生交流附2。2、提升练习交流校对附3。3、课堂小结说说这节课的收获!学生回顾小结。附1:老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。 师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-------出示课题附2:1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔„„ 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。附3:方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 (3)通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。 8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。[板书设计] 课题:鸽巢问题 学生板演区 教师讲解分析 “总有” “至少”4 0 0 3 1 0 2 2 0 2 1 1 枚举法假设把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 假设法4÷3=1(本)......1(本) 1+1=2(本)7÷3=2(本)......1(本) 2+1=3(本)8÷3=2(本)......2(本) 2+1=3(本)10÷3=3(本)......1(本) 3+1=4(本)
相关教案
这是一份小学数学人教版六年级下册5 数学广角 (鸽巢问题)教学设计,共6页。
这是一份小学数学5 数学广角 (鸽巢问题)教案,共5页。教案主要包含了情景导入,探究新知,解决问题,全课总结,板书设计等内容,欢迎下载使用。
这是一份小学数学人教版六年级下册5 数学广角 (鸽巢问题)教学设计,共8页。教案主要包含了教学内容,教材分析,设计理念,教学目标,教学重点,教学难点,教学准备,教学过程等内容,欢迎下载使用。