|教案下载
搜索
    上传资料 赚现金
    5.7 三角函数的应用--2022-2023学年高一数学新教材同步(教学设计)(人教A版2019必修第一册)
    立即下载
    加入资料篮
    5.7 三角函数的应用--2022-2023学年高一数学新教材同步(教学设计)(人教A版2019必修第一册)01
    5.7 三角函数的应用--2022-2023学年高一数学新教材同步(教学设计)(人教A版2019必修第一册)02
    5.7 三角函数的应用--2022-2023学年高一数学新教材同步(教学设计)(人教A版2019必修第一册)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学5.7 三角函数的应用教案

    展开
    这是一份高中数学5.7 三角函数的应用教案,共12页。教案主要包含了教材分析,学情分析,学习目标,教学重点,教学过程,布置作业等内容,欢迎下载使用。

    5.7三角函数的应用

    教学设计

    教材分析

    本小节内容选自《普通高中数学必修第一册》人教A版(2019)第五章《三角函数》的第七节《三角函数的应用》。以下是本节的课时安排:

     

    第七节

    课时内容

    三角函数的应用

    所在位置

    教材第242页

     

     

    新教材

    内容

    分析

    教材用4个实例介绍了三角函数模型的应用:弹簧振子问题,交变电流问题,温度随时间呈周期变化的问题,港口海水深度随时间呈周期性变化的问题,前两个实例中的模型是物理学中比较理想化的模型,后两个实例中的模型是现实生活中仅在一定范围内呈现出近似于周期变化的模型,教材在素材的选择上注意了真实性和广泛性,引导学生提供解决有一定综合性和思考水平的问题,培养综合应用数学和其他知识解决问题的能力。

     

    核心素养培养

    通过实例,培养数学建模的核心素养;通过解决实际应用问题,提升数学运算的核心素养。

    教学主线

    三角函数的图象与性质

     

    学情分析

     

       三角函数是一种特殊的周期函数,既可以联系物理、生物、自然界中的周期现象,也可以从已学过的指数函数、对数函数、幂函数等得到启发,还要注意与锐角的三角函数建立联系。

     

    学习目标

     

    1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题,提升数学运算的核心素养;

    2会将实际问题抽象为三角函数模型,培养数学建模的核心素养。

     

     

    教学重点

    重点:会用三角函数解决一些简单的实际问题

    难点:体会三角函数是描述周期变化现象的重要函数模型.

    教学过程

    (一)新知导入

    1. 创设情境,生成问题

    温州市区著名景点——江心屿,江心屿上面有座寺庙——江心寺,在江心寺中题了一副非常知名的对联.上联是:云朝朝 朝朝朝 朝朝朝散;下联是:潮长长 长长长 长长长消.该对联巧妙地运用了叠字诗展现了瓯江潮水涨落的壮阔画面.下面是瓯江江心屿码头在某年某个季节每天的时间与水深的关系表:

    江心屿

    时间

    0

    1

    3

    6

    8

    9

    12

    15

    18

    21

    24

    水深

    6

    6.25

    7.5

    5

    2.84

    2.5

    5

    7.5

    5

    2.5

    5

    探究 1.仔细观察表格中的数据,你能从中得到一些什么信息?

    2.以时间为横坐标,水深为纵坐标建立平面直角坐标系,将上面表格中的数据对应点描在直角坐标系中,你能得到什么结论?

    提示 1.水深随时间的变化呈周期变化.

    2.若用平滑的曲线连接各点,则大致呈正弦曲线.

    (二)三角函数在物理中的应用

    在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为简谐运动”.A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T,它是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式f给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωxφ称为相位;x0时的相位φ称为初相.

    【做一做】函数ysin的周期、振幅、初相分别是(  )

    A       B

    C3,-  D3

    答案B

     

     (三)典型例题

    1. 三角函数在物理中的应用

    1.已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s4sint[0,+).用五点法作出这个函数的简图,并回答下列问题.

    小球在开始振动(t0)时的位移是多少?

    小球上升到最高点和下降到最低点时的位移分别是多少?

    经过多长时间小球往复振动一次?

    解析列表如下:

     

     

     

     

    t

    2t

    0

    π

    sin

    0

    1

    0

    1

    0

    s

    0

    4

    0

    4

    0

     

    描点、连线,图象如图所示.

    t0代入s4sin,得s4sin 2

    所以小球开始振动时的位移是2 cm.

    小球上升到最高点和下降到最低点时的位移分别是4 cm和-4 cm.

    因为振动的周期是π,所以小球往复振动一次所用的时间是π s.

    2.  已知电流I与时间t的关系式为IAsin(ωtφ).

    如图是IAsin(ωtφ)在一个周期内的图象,根据图中数据求IAsin(ωtφ)的解析式;

    如果t在任何一段秒的时间内,电流IAsin(ωtφ)都能取得最大值和最小值,那么ω的最小正整数值是多少?

    【解析】①由题图可知A300.

    t1=-t2,则周期T2(t2t1)2ω150π.

    又当t时,I0,即sin0,而|φ|φ.

    故所求函数的解析式为I300sin.

    依题意,周期T,即(ω0)ω300π942.48.

    ωN*,故ω的最小正整数值为943.

     

    【类题通法】三角函数解决物理问题的三个关键量

    (1)物体运动的初始位置,即初相.

    (2)完成一次运动需要的时间,即周期.

    (3)离开平衡位置的最大位移,即振幅.

    【巩固练习1弹簧振子以O为平衡位置,在BC两点间做简谐运动,BC相距20 cm,某时刻振子处在B点,经0.5 s振子首次到达C点,求:

    (1)振动的振幅、周期和频率;

    (2)弹簧振子在5 s内通过的路程及位移.

    【解析】 (1)设振幅为A,则2A20 cm,所以A10 cm.

    设周期为T,则0.5 s,所以T1,所以f1 Hz.

    (2)振子在1 s内通过的距离为4A,故在5 s内通过的路程s5×4A20A20×10200 (cm)

    5 s末物体处在B点,所以它的位移为0 cm.

     

    2.三角函数在生活中的应用

    3. 估计某一天的白昼时间的小时数D(t)的表达式是D(t)=sin (t-79)+12,其中t(tZ)表示某天的序号,t=0表示1月1日,以此类推,常数k与某地所处的纬度有关.

    (1)在波士顿,k=6,试画出当0≤t≤365时函数的图象;

    (2)在波士顿哪一天白昼时间最长?哪一天最短?

    (3)估计在波士顿一年中有多少天的白昼超过10.5小时.

    【解析】(1)先用五点法作出f(t)3sin (t79)的简图,

    (t79)0(t79),得t79t444.

    t0时,f(0)3sin (79)3sin(1.36)2.9.

    f(x)的周期为365f(365)2.9.

    f(t)[0,365]上的图象向上平移12个单位,就得D(t)的图象(如图所示)

    (2)白昼时间最长的一天,即D(t)取最大值的一天,此时t170,对应的是620(闰年除外),类似地,t353D(t)取最小值,即1220(闰年除外)白昼最短.

    (3)D(t)>10.5,即3sin (t79)12>10.5

    sin (t79)>t[0,365]

    292>t49,29249243.故约有243天的白昼时间超过10.5小时.

    【类题通法】已知实际问题的函数解析式解决相关问题,题目一般较容易,只需根据函数解析式并结合题中所提供信息即可求解.

    【巩固练习2某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:

    f(t)=10-2sint∈[0,24).

    (1)求实验室这一天的最大温差;

    (2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?

    【解析】(1)因为f(t)102sin

    0t24,所以t

    1sin1.

    t2时,sin1

    t14时,sin=-1.

    于是f(t)[0,24]上的最大值为12,最小值为8.

    故实验室这一天最高温度为12 ,最低温度为8 ,最大温差为4 .

    (2)依题意,当f(t)11时实验室需要降温.

    (1)f(t)102sin

    故有102sin11

    sin<-.

    0t24,所以t

    10t18.故在10时至18时实验室需要降温.

    3.拟合三角函数模型

    4.某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作yf(t),下面是某日水深的数据.

    t/小时

    0

    3

    6

    9

    12

    15

    18

    21

    24

    y/米

    10.0

    13.0

    9.9

    7.0

    10.0

    13.0

    9.9

    7.0

    10.0

    经长期观察,yf(t)的曲线可近似地看成是函数yAsin ωtb的图象.

    (1)试根据以上数据,求出函数yf(t)的近似解析式;

    (2)一般情况下,船舶航行时,船底高出海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,那么它至多能在港内停留多长时间(忽略进出港所需的时间)

    【解析】(1)由已知数据,描出曲线如图:

    易知函数yf(t)的周期T12,振幅A3b10

    ωy3sin t10.

    (2)由题意,该船进出港时,水深应不小于56.511.5米,

    y11.5,得3sin t1011.5sin t.

    0t240t4π.

    ①②tππtπ.

    化简得1t513t17.

    该船最早能在凌晨1时进港,下午17时出港,在港内最多可停留16小时.

    【类题通法】在处理曲线拟合和预测的问题时,通常需以下几个步骤

    (1)根据原始数据,绘出散点图;

    (2)通过散点图,作出“最贴近”的直线或曲线,即拟合直线或拟合曲线;

    (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式;

    (4)利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.

    【巩固练习3 已知某海滨浴场的海浪高度y(米)是时间t(时)的函数,其中0≤t≤24,记yf(t),下表是某日各时的浪高数据:

    t

    0

    3

    6

    9

    12

    15

    18

    21

    24

    y

    1.5

    1.0

    0.5

    1.0

    1.5

    1

    0.5

    0.99

    1.5

    经长期观测,yf(t)的图象可近似地看成是函数yAcos ω tb的图象.

    (1)根据以上数据,求其最小正周期,振幅及函数解析式;

    (2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?

    【解析】(1)由表中数据可知,T12,所以ω.

    t0时,y1.5

    所以Ab1.5t3时,y1.0,得b1.0,所以振幅为,函数解析式为ycos t1(0t24)

    (2)因为y>1时,才对冲浪爱好者开放,所以ycos t1>1cos t>0,2kπ<t<2kπkZ

    12k3<t<12k3(kZ)

    0t24

    所以0t<39<t<1521<t24,所以在规定时间内只有6个小时冲浪爱好者可以进行活动,即9<t<15.

    【设计意图】通过三角函数的实际应用,培养学生数学建模的核心素养。

    (五)操作演练  素养提升

    1如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将传播至(  )

    A.甲       B.乙

    C.丙  D.丁

    2商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F(t)504sin (t0),则在下列哪个时间段内人流量是增加的(  )

    A[0,5]  B[5,10]

    C[10,15]  D[15,20]

    3已知某人的血压满足函数解析式f(t)24sin 160πt115,其中f(t)为血压,t为时间,则此人每分钟心跳的次数为(  )

    A60  B70

    C80  D90

    4如图,某港口一天6时到18时的水深变化曲线近似满足函数y3sink,据此函数可知,这段时间水深(单位:m)的最大值为(  )

    A5        B6        C8  D10

    答案1.C  2.C  3.C   4.C

    【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。

    (五)课堂小结,反思感悟

     1.知识总结:

    2.学生反思:

    1通过这节课,你学到了什么知识?

     

                                                                               

     

                                                                               

    2在解决问题时,用到了哪些数学思想?

     

                                                                                 

     

                                                                                                      

    【设计意图】

    通过总结,让学生进一步巩固函数的表示法,树立用函数解析式解决相关问题的意识。

     

     

    布置作业

    完成教材:第244页  练习     第1,2,3题

             第248页  练习     第1,2题

             第249 页   习题5.7  第1,2,3题

     

     


     

     

    相关教案

    人教A版 (2019)必修 第一册5.1 任意角和弧度制教学设计及反思: 这是一份人教A版 (2019)必修 第一册5.1 任意角和弧度制教学设计及反思,共9页。教案主要包含了教材分析,学情分析,学习目标,教学重点,教学过程,布置作业等内容,欢迎下载使用。

    高中人教A版 (2019)第一章 集合与常用逻辑用语1.4 充分条件与必要条件教案: 这是一份高中人教A版 (2019)第一章 集合与常用逻辑用语1.4 充分条件与必要条件教案,共1页。教案主要包含了设计意图,思维引导,类题通法,巩固练习1,巩固练习2,巩固练习3等内容,欢迎下载使用。

    人教A版 (2019)必修 第一册5.1 任意角和弧度制教学设计: 这是一份人教A版 (2019)必修 第一册5.1 任意角和弧度制教学设计,共14页。教案主要包含了教材分析,学情分析,学习目标,教学重点,教学过程,布置作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        5.7 三角函数的应用--2022-2023学年高一数学新教材同步(教学设计)(人教A版2019必修第一册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map