第15章:概率(A卷基础卷)-2021-2022学年高一数学必修第二册同步单元AB卷
展开第16章:概率(A卷基础卷)
一、单选题(共8小题,满分40分,每小题5分)
1、(2021·横峰中学高二开学考试)抛掷一颗质地均匀的骰子,记事件为“向上的点数为1或4”,事件为“向上的点数为奇数”,则下列说法正确的是( )
A.与互斥 B.与对立
C. D.
2、(2020·安徽省安庆一中高一期末)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有1个白球”和“都是红球”
B.“至少有2个白球”和“至多有1个红球”
C.“恰有1个白球” 和“恰有2个白球”
D.“至多有1个白球”和“都是红球”
3、(2020·福建省福州一中学高一月考)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )
A.至少有一个红球与都是红球
B.至少有一个红球与都是白球
C.恰有一个红球与恰有二个红球
D.至少有一个红球与至少有一个白球
4、(2020·山西省太原五中高一期末)将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过2,事件B表示向上的一面出现的点数不小于3,事件C表示向上的一面出现奇数点,则( )
A.A与B是对立事件 B.A与B是互斥而非对立事件
C.B与C是互斥而非对立事件 D.B与C是对立事件
5、(江苏栟茶中学期末)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动
6、(2021·福建龙岩市·高二期末)下列命题中正确的是( )
A.事件发生的概率等于事件发生的频率
B.一个质地均匀的骰子掷一次得到3点的概率是,说明这个骰子掷6次一定会出现一次3点
C.掷两枚质地均匀的硬币,事件为“一枚正面朝上,一枚反面朝上”,事件为“两枚都是正面朝上”,则
D.对于两个事件、,若,则事件与事件互斥
7、(江苏省徐州市沛县2021-2022学年高三上学期第一次学情调研)根据天气预报,某一天A城市和B城市降雨的概率均为0.6,假定这一天两城市是否降雨相互之间没有影响,则该天这两个城市中,至少有一个城市降雨的概率为
A.0.16 B.0.48
C.0.52 D.0.84
8、(2020·黑龙江省牡丹江一中高一开学考试)有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( )
A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶
二、多选题(共4小题,满分20分,每小题5分,少选的3分,多选不得分)
9、(2020·江苏省海安高级中学高一月考)抛掷一枚骰子1次,记“向上的点数是4,5,6”为事件A,“向上的点数是1,2”为事件B,“向上的点数是1,2,3”为事件C,“向上的点数是1,2,3,4”为事件D,则下列关于事件A,B,C,D判断正确的有( )
A.A与B是互斥事件但不是对立事件
B.A与C是互斥事件也是对立事件
C.A与D是互斥事件
D.C与D不是对立事件也不是互斥事件
10、(2020·辽宁省实验高一期末)下面结论正确的是( )
A.若,则事件A与B是互为对立事件
B.若,则事件A与B是相互独立事件
C.若事件A与B是互斥事件,则A与也是互斥事件
D.若事件A与B是相互独立事件,则A与也是相互独立事件
11、(2020·山东滨州市·高一期末)已知事件,,且,,则下列结论正确的是( )
A.如果,那么,
B.如果与互斥,那么,
C.如果与相互独立,那么,
D.如果与相互独立,那么,
12、(2020·山东省滕州一中高一期末)甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是( )
A.甲、乙、丙三人至少一人选化学与全选化学是对立事件
B.甲的不同的选法种数为15
C.已知乙同学选了物理,乙同学选技术的概率是
D.乙、丙两名同学都选物理的概率是
三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)
13、(2020·山东省实验高一期末)已知甲运动员的投篮命中率为0.6,若甲投篮两次(两次投篮命中与否互不影响),则其两次投篮都没命中的概率为_________________.
14、(2020·云南省玉溪第一中学高一期末)口袋内装有一些大小相同的红球、黄球和蓝球,从中摸出1个球,摸出红球的概率为0.42,摸出黄球的概率是0.28.若红球有21个,则蓝球有________个.
15、(四川省仁寿第一中学校南校区2021-2022学年高三上学期第一次调研考试(理)
)已知甲、乙、丙三人各自独立解决某一问题的概率分别是,则甲、乙、丙至少有一人解决该问题的概率是___________.
16、(湖北省华大新高考联盟2020届高三下学期4月教学质量测评(文))某工厂生产了一批节能灯泡,这批产品中按质量分为一等品、二等品、三等品.从这批产品中随机抽取一件产品检测,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.
四、解答题(共6小题,满分70分,第17题10分,其它12分)
17、(2020·全国高一课时练习)袋中有红、黄、白3种颜色的球各1只(所有的球除颜色外都相同),从中每次任取1只,有放回地抽取3次,求:
(1)3只球颜色全相同的概率;
(2)3只球颜色不全相同的概率.
18、(2020·全国高一课时练习)某人群中各种血型的人所占的比例见下表:
血腥 | A | B | AB | O |
该血型的人所占的比例/% | 28 | 29 | 8 | 35 |
已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.该人群中的小明是B型血,若他因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
19、(2020·全国高一课时练习)小王某天乘坐火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率;
(3)这三列火车恰有一列火车正点到达的概率.
20、(2018·梁丰中学测试)已知f(x)=x2+2x,x∈[-2,1],给出事件A:f(x)≥a.
(1)当A为必然事件时,求a的取值范围;
(2)当A为不可能事件时,求a的取值范围.
21、(2021·山东淄博市·高二期末)袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求:
(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少?
(2)从中任取两个球,得到的两个球颜色不相同的概率是多少?
22、.(2020·北师大附中高一期末)甲、乙二人独立破译同一密码,甲破译密码的概率为,乙破译密码的概率为.记事件A:甲破译密码,事件B:乙破译密码.
(1)求甲、乙二人都破译密码的概率;
(2)求恰有一人破译密码的概率;
(3)小明同学解答“求密码被破译的概率”的过程如下: