资料中包含下列文件,点击文件名可预览资料内容
还剩3页未读,
继续阅读
所属成套资源:新苏教版数学必修第二册课件PPT+分层练习+单元测试全套
成套系列资料,整套一键下载
苏教版数学高一必修第二册 第15章 概率 单元测试
展开
这是一份苏教版数学高一必修第二册 第15章 概率 单元测试,文件包含苏教版数学高一必修第二册第15章概率单元测试原卷版docx、苏教版数学高一必修第二册第15章概率单元测试解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
第15章 概率 单元测试学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题:本大题每小题3分,共8小题,共24分,在所给出的四个选项中只有一个是正确的。1.某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为,,,则该同学从家到学校至少遇到一次红灯的概率为( )A. B. C. D.2.从装有两个红球和两个黑球的口袋内任取两个球,现有如下说法:①至少有一个黑球与都是黑球是互斥而不对立的事件;②至少有一个黑球与至少有一个红球不是互斥事件;③恰好有一个黑球与恰好有两个黑球是互斥而不对立的事件;④至少有一个黑球与都是红球是对立事件.在上述说法中,正确的个数为( )A.1 B.2 C.3 D.43.抛掷两枚质地均匀的硬币,下列事件与事件“至少一枚硬币正面朝上”互为对立的是( )A.至多一枚硬币正面朝上 B.只有一枚硬币正面朝上C.两枚硬币反面朝上 D.两枚硬币正面朝上4.随机抛郑两枚均匀骰子,观察得到的点数,则得到的两个骰子的点数之和能被3整除的概率是( )A. B. C. D.5.随机掷两个质地均匀的正方体骰子,骰子各个面分别标记有共六个数字,记事件“骰子向上的点数是和”,事件“骰子向上的点数是和”,事件“骰子向上的点数含有”,则下列说法正确的是( )A.事件与事件是相互独立事件 B.事件与事件是互斥事件C. D.6.甲、乙两人轮流投篮,每人每次投一球.甲先投且先投中者获胜,约定有人获胜或每人都已投球2次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.则投篮结束时,乙只投了1个球的概率为( )A. B. C. D.7.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是( )A.恰好有一个白球与都是红球 B.至多有一个白球与都是红球C.至多有一个白球与都是白球 D.至多有一个白球与至多一个红球8.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是( )A. B. C. D.二、多项选择题:本大题每小题3分,共4小题,共12分,在所给出的四个选项中至少有一个是正确的,全部选对得3分,部分选对得2分,有选错的得0分。9.连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( )A.与不互斥且相互独立 B.与互斥且不相互独立C.与互斥且不相互独立 D.与不互斥且相互独立10.下面结论正确的是( )A.若,则事件A与B是互为对立事件B.若,则事件A与B是相互独立事件C.若事件A与B是互斥事件,则A与也是互斥事件D.若事件A与B是相互独立事件,则A与也是相互独立事件11.先后两次掷一枚质地均匀的骰子,表示事件“两次掷出的点数之和是5”,表示事件“第二次掷出的点数是偶数”,表示事件“第一次掷出的点数是5”,表示事件“至少出现一个奇数点”,则( )A.与互斥 B.C.与对立 D.与相互独立12.一个质地均匀的正四面体4个表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件M为“第一次向下的数字为3或4”,事件N为“两次向下的数字之和为偶数”,则下列说法正确的是( )A.事件M发生的概率为 B.事件M与事件N互斥C.事件M与事件N相互独立 D.事件发生的概率为三、填空题:本大题每小题3分,共4小题,共12分。13.某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.14.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________.15.在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.16.甲、乙两人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是,,,乙击中红、黄、蓝三区域的概率依次是,,,甲、乙两人射击情况互不影响,若甲、乙各射击一次,则两人命中同色区域的概率为________,两人命中不同色区域的概率为________.四、解答题:共6小题,共52分。17.(本题满分8分)甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.18.(本题满分8分)甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙、丙则约定;两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.19.(本题满分8分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(本题满分8分)某中学为研究本校高三学生在市联考中的语文成绩,随机抽取了100位同学的语文成绩作为样本,得到以分组的样本频率分布直方图如图.(1)求直方图中的值;(2)请估计本次联考该校语文成绩的中位数和平均数;(3)样本内语文分数在的两组学生中,用分层抽样的方法抽取5名学生,再从这5名学生中随机选出2人,求选出的两名学生中恰有一人成绩在中的概率.21.(本题满分10分)甲、乙两名篮球运动员进行投篮比赛,甲投篮命中的概率为,乙投篮命中的概率为,在每次投篮中,甲和乙投篮是否命中相互没有影响.(1)求甲乙各投篮一次,恰好有1人命中的概率;(2)求甲乙各投篮一次,至少有1人命中的概率.22.(本题满分10分)某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.(一)人数统计表 (二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出、、的值;(2)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率.题号一二三四总分得分序号分组(岁)本组中“低碳族”人数“低碳族”人数在本组所占的比例1[25, 30)1200.62[30, 35)195p3[35, 40)1000.54[40, 45)a0.45[45, 50)300.36[55, 60)150.3
第15章 概率 单元测试学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题:本大题每小题3分,共8小题,共24分,在所给出的四个选项中只有一个是正确的。1.某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为,,,则该同学从家到学校至少遇到一次红灯的概率为( )A. B. C. D.2.从装有两个红球和两个黑球的口袋内任取两个球,现有如下说法:①至少有一个黑球与都是黑球是互斥而不对立的事件;②至少有一个黑球与至少有一个红球不是互斥事件;③恰好有一个黑球与恰好有两个黑球是互斥而不对立的事件;④至少有一个黑球与都是红球是对立事件.在上述说法中,正确的个数为( )A.1 B.2 C.3 D.43.抛掷两枚质地均匀的硬币,下列事件与事件“至少一枚硬币正面朝上”互为对立的是( )A.至多一枚硬币正面朝上 B.只有一枚硬币正面朝上C.两枚硬币反面朝上 D.两枚硬币正面朝上4.随机抛郑两枚均匀骰子,观察得到的点数,则得到的两个骰子的点数之和能被3整除的概率是( )A. B. C. D.5.随机掷两个质地均匀的正方体骰子,骰子各个面分别标记有共六个数字,记事件“骰子向上的点数是和”,事件“骰子向上的点数是和”,事件“骰子向上的点数含有”,则下列说法正确的是( )A.事件与事件是相互独立事件 B.事件与事件是互斥事件C. D.6.甲、乙两人轮流投篮,每人每次投一球.甲先投且先投中者获胜,约定有人获胜或每人都已投球2次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.则投篮结束时,乙只投了1个球的概率为( )A. B. C. D.7.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是( )A.恰好有一个白球与都是红球 B.至多有一个白球与都是红球C.至多有一个白球与都是白球 D.至多有一个白球与至多一个红球8.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是( )A. B. C. D.二、多项选择题:本大题每小题3分,共4小题,共12分,在所给出的四个选项中至少有一个是正确的,全部选对得3分,部分选对得2分,有选错的得0分。9.连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( )A.与不互斥且相互独立 B.与互斥且不相互独立C.与互斥且不相互独立 D.与不互斥且相互独立10.下面结论正确的是( )A.若,则事件A与B是互为对立事件B.若,则事件A与B是相互独立事件C.若事件A与B是互斥事件,则A与也是互斥事件D.若事件A与B是相互独立事件,则A与也是相互独立事件11.先后两次掷一枚质地均匀的骰子,表示事件“两次掷出的点数之和是5”,表示事件“第二次掷出的点数是偶数”,表示事件“第一次掷出的点数是5”,表示事件“至少出现一个奇数点”,则( )A.与互斥 B.C.与对立 D.与相互独立12.一个质地均匀的正四面体4个表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件M为“第一次向下的数字为3或4”,事件N为“两次向下的数字之和为偶数”,则下列说法正确的是( )A.事件M发生的概率为 B.事件M与事件N互斥C.事件M与事件N相互独立 D.事件发生的概率为三、填空题:本大题每小题3分,共4小题,共12分。13.某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.14.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________.15.在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.16.甲、乙两人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是,,,乙击中红、黄、蓝三区域的概率依次是,,,甲、乙两人射击情况互不影响,若甲、乙各射击一次,则两人命中同色区域的概率为________,两人命中不同色区域的概率为________.四、解答题:共6小题,共52分。17.(本题满分8分)甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.18.(本题满分8分)甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙、丙则约定;两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.19.(本题满分8分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(本题满分8分)某中学为研究本校高三学生在市联考中的语文成绩,随机抽取了100位同学的语文成绩作为样本,得到以分组的样本频率分布直方图如图.(1)求直方图中的值;(2)请估计本次联考该校语文成绩的中位数和平均数;(3)样本内语文分数在的两组学生中,用分层抽样的方法抽取5名学生,再从这5名学生中随机选出2人,求选出的两名学生中恰有一人成绩在中的概率.21.(本题满分10分)甲、乙两名篮球运动员进行投篮比赛,甲投篮命中的概率为,乙投篮命中的概率为,在每次投篮中,甲和乙投篮是否命中相互没有影响.(1)求甲乙各投篮一次,恰好有1人命中的概率;(2)求甲乙各投篮一次,至少有1人命中的概率.22.(本题满分10分)某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.(一)人数统计表 (二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出、、的值;(2)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率.题号一二三四总分得分序号分组(岁)本组中“低碳族”人数“低碳族”人数在本组所占的比例1[25, 30)1200.62[30, 35)195p3[35, 40)1000.54[40, 45)a0.45[45, 50)300.36[55, 60)150.3
相关资料
更多