初中数学人教版七年级上册3.2 解一元一次方程(一)----合并同类项与移项教案
展开
这是一份初中数学人教版七年级上册3.2 解一元一次方程(一)----合并同类项与移项教案,共6页。教案主要包含了 自主探究等内容,欢迎下载使用。
3.2解一元一次方程(1)—— 合并同类项与移项教学设计教学目标: 知识与技能 理解合并同类项法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。 过程与方法 通过探索合并同类项法则的过程,培养学生观察、思考、归纳的能力,积累数学探究活动的经验。 情感、态度与价值观 通过探索合并同类项法则,并进一步探索一元一次方程一般解法的过程,感受数学活动充满创造性,激发学生学习数学的兴趣。 教学重点: 合并同类项法则的探索及应用。 教学难点: 合并同类项法则的理解和灵活应用。 教学过程:温故知新:1.等式性质 1: 2: ; 1.师:你们知道等式的基本性质是什么? 2.利用等式的基本性质解方程:(投影)解方程:(1)x-9=8; (2) 3x+1=4 教师请两名学生板演,后集体订正。 公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》。“对消”与“还原”是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。 二、 自主探究: 1.问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机? 投影仪展示问题:(要求学生展开讨论,教师请举手的同学回答下列问题) ①这道题应设什么为未知数? ②本题的相等关系是什么? ③去年购买的计算机,今年购买的计算机用代数式应怎样表示? ④这道题的方程是什么? ⑤怎样用等式的基本性质解方程? 教师展示解一元一次的过程: 所列方程x+2x+4x=140,如何解这个方程呢? 教师分析:2x表示2×x,4x表示4×x,x表示1×x.根据分配律,x+2x+4x=(1+2+4)x=7x.这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0. 分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即 前年购买量+去年购买量+今年购买量=140 列方程:_____________ 如何解这个方程呢? 根据分配律,x+2x+4x=(______)x=7x; 这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0; 下面的框图表示了解这个方程的具体过程: x+2x+4x=140 ↓合并同类项 7x=140 ↓系数化为1 x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解方程 ; 3. 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生? 分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系; (1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本; 根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本; 这批书的总数是一个定值(不变量),表示它的两个式子应相等; 根据这一相等关系,列方程: ___________;本题还可以画示意图,帮助我们分析: 注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”. 分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢? 要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即 3x+20 -4x-20 =4x-25 -4x-20 即 3x-4x=-25-20 将它与原来方程比较,相当于把原方程左边的+20变为-20 后移到方程右边,把原方程右边的4x变为-4x后移到左边. 像上面那样,把等式一边的某项变号后移到另一边,叫做移项. 方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.3x+20=4x-25↓移项3x-4x=-25-20↓合并同类项-x=-45↓系数化为1x=45 由此可知这个班共有45个学生. 4. 例2 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】1.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数. 思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人. 关键:本题中相等关系是什么? _____________. 解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,列方程: _______________ 合并,得________ 系数化为1,得x=___ 所以2x=____,3x=_____,5x=______ 答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60; 2.解方程(1)6x-7=4x -5 (2)x-6 = x (3)3x+5=4x+1 (4)9-3y=5y+5 【要点归纳】: 列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系; 合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;【拓展训练】 1.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少? 解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个 列方程 _________ 合并,得_________ 系数化为1,得 x=_____ 黑色皮块为___×___=____(个),白色皮块有____×___=____(个)2.某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解) 解:设全书共有____页,那么第一天读了( )页,第二天读了( )页. 本问题的相等关系是:______+______+_____=全书页数; 列方程:_______________________。
相关教案
这是一份人教版七年级上册3.2 解一元一次方程(一)----合并同类项与移项教案设计,共4页。教案主要包含了新课引入,探究新知,讨论交流,解决问题,巩固练习,作业设计等内容,欢迎下载使用。
这是一份人教版七年级上册第三章 一元一次方程3.2 解一元一次方程(一)----合并同类项与移项教案,共5页。
这是一份2020-2021学年3.2 解一元一次方程(一)----合并同类项与移项教学设计,共4页。教案主要包含了移项的概念 三等内容,欢迎下载使用。