初中数学苏科版八年级上册1.2 全等三角形随堂练习题
展开全等三角形中,半角模型是指在证明两个三角形全等时,在某个角中出现它的半角的情况,其常见类型如:
如图:∠DAE=12∠BAC,AB=AC,该模型通常将∆ADB进行旋转,旋转角等于∠BAC,如图:
得到∆ADB≅∆AFC;∆ADE≅∆AFD。
提醒:可以尝试证明一下
【典例1】问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.
方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;
小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;
问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;
(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.
模型二 手拉手模型
如图:AD=AE,AB=AC,将∆ADE绕着A点旋转一定的角度,形成∆AFG,连接BF,CG,可得∆ABF≅∆ACG。
提醒:可以尝试证明一下
【典例2】如图,若和都是等边三角形,求的度数.
模型三 一线三等角模型
如图:点C在线段BD上,∠1=∠2=∠3,且在∆ABC和∆CDE中,有一组对应边相等,可得∆ABC≅∆CDE。
提醒:可以尝试证明一下
【典例3】如图,在中,.
(1)如图①所示,直线过点,于点,于点,且.求证:.
(2)如图②所示,直线过点,交于点,交于点,且,则是否成立?请说明理由.
一、单选题
1.如图,在中,,,D、E是斜边上两点,且,若,,,则与的面积之和为( )
A.36B.21C.30D.22
2.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有( )
A.①②③④B.②③C.②③④D.③④
3.如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是( )
A.∠AOB=60°B.AP=BQ
C.PQ∥AED.DE=DP
4.如图,在中,,分别以,为边作等边和等边,连结,若,,则( )
A.B.C.4D.
5.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a=8cm,则DE的长为( )
A.40cmB.48cmC.56cmD.64cm
6.如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于( )
A.3B.2C.D.
二、填空题
7.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
8.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
9.如图,△ABC中,∠C=90°,AC=BC,将△ABC绕点A顺时针方向旋转60°到△AB'C'的位置,连接BC',BC'的延长线交AB'于点D,则BD的长为 _____.
10.如图,是边长为5的等边三角形,,.E、F分别在AB、AC上,且,则三角形AEF的周长为______.
11.如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则__________.
三、解答题
12.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
13.问题情境
在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
特例探究
如图1,当DM=DN时,
(1)∠MDB= 度;
(2)MN与BM,NC之间的数量关系为 ;
归纳证明
(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
拓展应用
(4)△AMN的周长与△ABC的周长的比为 .
14.如图,在△中,是上一点,是的中点,点在线段的延长线上,且.
(1)求证:△≌△;
(2)若,且,求的值.
15.如图所示,和都是等边三角形,且在同一直线上,连结交于,连接交于,连结.
求证:(1);
(2);
(3)是等边三角形.
16.(1)问题发现:
如图1,和均为等腰直角三角形,,连接,,点、、在同一条直线上,则的度数为__________,线段、之间的数量关系__________;
(2)拓展探究:
如图2,和均为等腰直角三角形,,连接,,点、、不在一条直线上,请判断线段、之间的数量关系和位置关系,并说明理由.
(3)解决问题:
如图3,和均为等腰三角形,,则直线和的夹角为__________.(请用含的式子表示)
17.问题背景:(1)如图①,已知中,,,直线m经过点A,直线m,直线m,垂足分别为点D,E,易证:______+______.
(2)拓展延伸:如图②,将(1)中的条件改为:在中,,D,A,E三点都在直线m上,并且有,请求出DE,BD,CE三条线段的数量关系,并证明.
(3)实际应用:如图③,在中,,,点C的坐标为,点A的坐标为,请直接写出B点的坐标.
18.(1)课本习题回放:“如图①,,,,,垂足分别为,,,.求的长”,请直接写出此题答案:的长为________.
(2)探索证明:如图②,点,在的边、上,,点,在内部的射线上,且.求证:.
(3)拓展应用:如图③,在中,,.点在边上,,点、在线段上,.若的面积为15,则与的面积之和为________.(直接填写结果,不需要写解答过程)
数学苏科版1.2 全等三角形当堂达标检测题: 这是一份数学苏科版1.2 全等三角形当堂达标检测题,文件包含第05讲微专题二全等三角形的半角手拉手及一线三等角模型教师版-数学八上同步精品讲义苏科版docx、第05讲微专题二全等三角形的半角手拉手及一线三等角模型学生版-数学八上同步精品讲义苏科版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
初中数学1.2 全等三角形课后练习题: 这是一份初中数学1.2 全等三角形课后练习题,文件包含第04讲微专题一全等三角形的公共边公共角边边角及X模型教师版-数学八上同步精品讲义苏科版docx、第04讲微专题一全等三角形的公共边公共角边边角及X模型学生版-数学八上同步精品讲义苏科版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
苏科版八年级数学上册同步精品讲义 第11讲 微专题三 将军饮马模型(学生版+教师版): 这是一份苏科版八年级数学上册同步精品讲义 第11讲 微专题三 将军饮马模型(学生版+教师版),文件包含苏科版八年级数学上册同步精品讲义第11讲微专题三将军饮马模型教师版docx、苏科版八年级数学上册同步精品讲义第11讲微专题三将军饮马模型学生版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。