|试卷下载
搜索
    上传资料 赚现金
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题3.4 整式的化简求值专项训练(50题)(苏科版)(原卷版).docx
    • 解析
      专题3.4 整式的化简求值专项训练(50题)(苏科版)(解析版).docx
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)01
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)02
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)03
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)01
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)02
    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)

    展开
    这是一份专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版),文件包含专题34整式的化简求值专项训练50题苏科版原卷版docx、专题34整式的化简求值专项训练50题苏科版解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    专题3.4 整式的化简求值专项训练(50题)
    【苏科版】
    考卷信息:
    本卷试题共50道大题,每大题2分,共计100分,限时100分钟,本卷试题针对性较高,覆盖面广,选题有深度,可衡量学生掌握整式化简求值计算的具体情况!
    一.解答题(共50小题)
    1.(2022秋•常宁市期末)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1
    (1)求所挡的二次三项式;
    (2)若x=﹣1,求所挡的二次三项式的值.
    2.(2022秋•龙岩期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
    尝试应用:
    (1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是    .
    (2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;
    拓展探索:
    (3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.
    3.(2022秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.
    4.(2022秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)
    (1)化简代数式;
    (2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?
    (3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?
    5.(2022秋•老河口市期中)如果关于x的多项式(3x2+2mx﹣x+1)+(2x2﹣mx+5)﹣(5x2﹣4mx﹣6x)的值与x的取值无关,试确定m的值,并求m2+(4m﹣5)+m的值.
    6.(2022秋•简阳市期末)已知:2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与x的取值无关,A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,先化简3A﹣[2(3A﹣2B)﹣3(4A﹣3B)]再求值.
    7.(2022秋•南昌期中)已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2]
    (1)化简x和y;
    (2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.
    8.(2022秋•福田区校级期中)如下1□2□3□4…□(n+1)将1到n+1(n≥1,且n为正整数)一共n+1个连续正整数按从小到大的顺序排成一排,每相邻的两个数之间放置一个方格.
    (1)一共需要放置    个方格;
    (2)如果第一个方格填入加号“+”,第二个方格填入减号“﹣”,第三个方格填入加号“+”,第四个方格填入减号“﹣”,…,按此规律轮流将加、减号从左向右依次填入方格中,问最后一个方格应填入什么符号?
    (3)按照(2)中的方法我们用加、减号将1到n+1一共n+1个连续正整数连接成一个算式,问这个算式的值等于多少?
    9.如果“三角”表示3(2x+5y+4z),“方框”表示﹣4[(3a+b)﹣(c﹣d)].
    求的值.
    10.先化简,后求值
    (1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1;
    (2)|a﹣2|+(b+3)2=0,求3a2b﹣[2ab2﹣2(ab﹣1.5a2b)+ab]+3ab2的值;
    (3)已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值;
    (4)已知ab=3,a+b=4,求3ab﹣[2a﹣(2ab﹣2b)+3]的值.
    11.课堂上老师给大家出了这样一道题,“当x=2010时,求代数式x+(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y+y3)的值”,小明一看,“x的值太大了,而且又没有y的值,怎么算呢?”你能帮小明解决这个问题吗?请写出过程.
    12.(2022秋•沭阳县期中)化简计算:
    (1)3a2﹣2a﹣a2+5a
    (2)14(−8x2+2x−4)−12(x−1)
    (3)根据下边的数值转换器,当输入的x与y满足|x+1|+(y−12)2=0时,请列式求出输出的结果.
    (4)若单项式23x2yn与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)

    13.(2022秋•张家港市期中)化简或化简求值
    ①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]
    ②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=−12,b=2时,﹣B+2A的值.
    ③如果代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试求代数式13a3−2b2−(14a3−3b2)的值.
    ④有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=12,y=﹣1”,甲同学把x=12看错成x=−12;但计算结果仍正确,你说是怎么一回事?
    14.(2022•沙坪坝区校级一模)一个四位数m=1000a+100b+10c+d(其中1≤a,b,c,d≤9,且均为整数),若a+b=k(c﹣d),且k为整数,称m为“k型数”.例如,4675:4+6=5×(7﹣5),则4675为“5型数”;3526:3+5=﹣2×(2﹣6),则3526为“﹣2型数”.
    (1)判断1731与3213是否为“k型数”,若是,求出k;
    (2)若四位数m是“3型数”,m﹣3是“﹣3型数”,将m的百位数字与十位数字交换位置,得到一个新的四位数m′,m′也是“3型数”,求满足条件的所有四位数m.
    15.(2022秋•武昌区期中)对于整数a,b,定义一种新的运算“⊙”:
    当a+b为偶数时,规定a⊙b=2|a+b|+|a﹣b|;
    当a+b为奇数时,规定a⊙b=2|a+b|﹣|a﹣b|.
    (1)当a=2,b=﹣4时,求a⊙b的值.
    (2)已知a>b>0,(a﹣b)⊙(a+b﹣1)=7,求式子34(a﹣b)+14(a+b﹣1)的值.
    (3)已知(a⊙a)⊙a=180﹣5a,求a的值.
    16.(2022秋•武城县期末)先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.
    17.(2022•威宁县一模)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7
    (1)求A等于多少?
    (2)若|a+1|+(b﹣2)2=0,求A的值.
    18.(2022秋•双流区期末)已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y
    (1)当x=2,y=−15时,求B﹣2A的值.
    (2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.
    19.(2022秋•赵县期末)有这样一道计算题:3x2y+[2x2y﹣(5x2y2﹣2y2)]﹣5(x2y+y2﹣x2y2)的值,其中x=12,y=﹣1.小明同学把“x=12”错看成“x=−12”,但计算结果仍正确;小华同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.
    20.(2022秋•醴陵市校级期中)若单项式23x5m+2n+2y3与−34x6y3m−2n−1的和仍是单项式,求m,n的值.
    21.(2022秋•岳麓区校级月考)先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.
    22.(2022秋•章贡区期末)先化简,再求值:3(2x2﹣3xy﹣5x﹣1)+6(﹣x2+xy﹣1),其中x、y满足(x+2)2+|y−23|=0.
    23.(2022秋•凤城市期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).
    (1)若A与B的和中不含x2项,求出a的值;
    (2)在(1)的基础上化简:B﹣2A.
    24.(2022秋•锦江区校级期末)已知M=x2﹣ax﹣1,N=2x2﹣ax﹣2x﹣1.
    (1)求N﹣(N﹣2M)的值;
    (2)若多项式2M﹣N的值与字母x取值无关,求a的值.
    25.(2022秋•泉州期中)已知多项式(a+3)x3﹣xb+x+a是关于x的二次三项式,求ab﹣ab的值.
    26.(2022秋•凤翔县期中)已知A=x﹣2y,B=﹣x﹣4y+1
    (1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)
    (2)当|x+12|与y2互为相反数时,求(1)中代数式的值.
    27.(2022秋•庄浪县期中)已知﹣2ambc2与4a3bnc2是同类项,求多项式3m2n﹣2mn2﹣m2n+mn2的值.
    28.(2022秋•柳州期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.
    (1)求A.
    (2)若|a+1|+(b﹣2)2=0,计算A的值.
    29.(2022秋•雨花区期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中|m﹣1|+(n+2)2=0
    30.(2022秋•朝阳区校级期中)已知m、n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m+3n的值.
    31.(2022秋•雄县期中)阅读材料:对于任何数,我们规定符号abcd的意义是abcd=ad﹣bc.例如:1234=1×4﹣2×3=﹣2
    (1)按照这个规定,请你计算56−28的值.
    (2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,23m+2n−1m2−2n的值.
    32.(2022秋•成都期中)如果代数式(﹣2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取得的值无关,试求代数式13a3﹣2b2﹣(14a3﹣3b2)的值.
    33.(2022秋•梁平区期末)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a=﹣2,b=2017时,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话,亲爱的同学们,你相信盈盈的说法吗?说说你的理由.
    34.(2022秋•金昌期中)小红做一道数学题:两个多项式A,B=4x2﹣5x﹣6,试求A+B的值.小红误将A+B看成A﹣B,结果答案为﹣7x2+10x+12(计算过程正确).试求A+B的正确结果.
    35.(2022秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.
    36.(2022秋•南县期中)有三个多项式A、B、C分别为:A=12x2+x﹣1,B=12x2+3x+1,C=12x2﹣x,请你对A﹣2B﹣C进行化简,并计算当x=﹣2时代数式A﹣2B﹣C的值.
    37.(2022•路南区一模)已知代数式A=x2+xy+2y−12,B=2x2﹣2xy+x﹣1
    (1)求2A﹣B;
    (2)当x=﹣1,y=﹣2时,求2A﹣B的值;
    (3)若2A﹣B的值与x的取值无关,求y的值.
    38.(2022秋•阳谷县期末)化简求值:
    (1)当a=﹣1,b=2时,求代数式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值
    (2)先化简,再求值:4xy﹣2(32x2﹣3xy+2y2)+3(x2﹣2xy),当(x﹣3)2+|y+1|=0,求式子的值
    (3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值
    39.(2022秋•海南区校级期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3﹣6a3b)﹣(﹣3a3﹣6a3b+10a3﹣3)写完后,让小红同学顺便给出一组a、b的值,老师说答案.当小红说完:“a=65,b=﹣2014”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?
    40.(2022秋•越秀区校级期中)化简求值:
    (1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.
    (2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.
    41.(2022秋•和平区校级月考)已知整式﹣5x2y﹣[2x2y﹣3(xy﹣2x2y﹣mx4)]+2xy不含x4项,化简该整式,若|x+1|+(y﹣2x)2=0,求该整式的值.
    42.(2022秋•黄陂区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1
    (1)求4A﹣(3A﹣2B)的值.
    (2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.
    43.(2022秋•建湖县期中)莉莉在计算一个多项式A减去多项式2b2﹣3b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.
    (1)据此请你求出这个多项式A;
    (2)求出这两个多项式运算的正确结果.
    44.(2022秋•崇仁县校级期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a
    (1)用含a,b的式子表示这个三角形的第二条边、第三条边及周长,结果要化简;
    (2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.
    45.(2022秋•永登县期中)填空题:(请将结果直接写在横线上)
    定义新运算“⊕”,对于任意有理数a,b有a⊕b=a+3b2,
    (1)4(2⊕5)=   .
    (2)若A=x2+2xy+y2,B=﹣2xy+y2,则(A⊕B)+(B⊕A)=   .
    46.(2022秋•乐陵市校级期中)(1)若代数式﹣4x6y与x2ny是同类项,求(4n﹣13)2015的值.
    (2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.
    (3)已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.
    47.(2022秋•江岸区校级月考)已知A=3x﹣2y﹣3,B=﹣4x+3y+2
    (1)求3A+2B;
    (2)将英文26个字母按以下顺序排列:a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z.规定a接在z后面,使26个字母排成圈,设计一个密码:若x代表其中一个字母,则x﹣3代表“把一个字母换成字母表中从它向前3位的字母”.如x表示字母m时,则x﹣3表示字母j.若(1)中求得的式子恰好是一个密码,请直接解读下列密文“Nqtajrfymx”的意思,并翻译成中文为   .
    48.(2022秋•北仑区期末)老师在黑板上书写一个正确的演算过程,随后用手掌捂住了一个二次三项式.形式如下:
    (1)求所捂的二次三项式;
    (2)若x=−32,求所捂的二次三项式的值.

    49.(2022秋•沛县期中)(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为   ,用含有n的代数式表示任意一个奇数为   ;(答案直接填在题中横线上)
    (2)用举例验证的方案探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是   ;(填“是”或“否”,答案直接填在题中横线上)
    (3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a﹣b是否“同时为奇数”或“同时为偶数”?并进一步得出一般性的结论.
    例:①若a、b都是偶数,设a=2m,b=2n,则a+b=2m+2n=2(m+n);a﹣b=2m﹣2n=2(m﹣n);
    此时a+b和a﹣b同时为偶数.
    请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;
    (4)以(3)的结论为基础进一步探索:若a、b是任意的两个整数,那么﹣a+b、﹣a﹣b、a+b、a﹣b是否“同时为奇数”或“同时为偶数”?
    (5)应用第(2)、(3)、(4)的结论完成:在2016个自然数1,2,3,…,2015,2016的每一个数的前面任意添加“+”或“﹣”,则其代数和一定是   .(填“奇数”或“偶数”,答案直接填在题中横线上)
    50.(2022秋•金牛区校级期中)已知m、x、y满足(1)32(x﹣5)2+5|m|=0;(2)﹣a2by+1与3a2b3是同类项,求代数式;0.375x2y+5m2x﹣{−716x2y+[−14xy2+(−316x2y﹣3.475xy2)]﹣6.275xy2}的值.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题3.4 整式的化简求值专项训练(50题)-2022-2023学年七年级数学上册举一反三系列(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map