|试卷下载
搜索
    上传资料 赚现金
    专题2.3 圆及相关概念(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版)
    立即下载
    加入资料篮
    专题2.3 圆及相关概念(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版)01
    专题2.3 圆及相关概念(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版)02
    专题2.3 圆及相关概念(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版)03
    还剩25页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版九年级上册2.1 圆精品课时训练

    展开
    这是一份苏科版九年级上册2.1 圆精品课时训练,共28页。

    专题2.3 圆及相关概念(直通中考)
    【要点回顾】
    【知识点1】圆的定义
    (1) 动态定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋
    转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.                  
    (2) 静态定义:平面内到定点O的距离等于定长r的点的集合.定长为半径,定点叫圆心。
    【知识点2】与圆有关的基本概念
    弦:连结圆上任意两点的线段叫做弦;
    直径:经过圆心的弦叫做直径.直径是圆中最长的弦,直径是弦,但弦不一定是直径;
    弦心距:圆心到弦的距离叫做弦心距.
    弧:圆上任意两点间的部分叫做圆弧,简称弧.
    半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
    优弧:大于半圆的弧叫做优弧;
    劣弧:小于半圆的弧叫做劣弧.无特殊说明时,弧指的是劣弧.
       圆心相同,半径不等的两个圆叫做同心圆.;
       圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
       在同圆或等圆中,能够完全重合的弧叫做等弧.
    【知识点3】点和圆的位置关系
    如果圆的半径为r,点到圆心的距离为d,则:
    点在圆上d=r;  点在圆内dr.
    一、单选题
    1.(2021·上海·统考中考真题)如图,已知长方形中,,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是(     )

    A.点C在圆A外,点D在圆A内 B.点C在圆A外,点D在圆A外
    C.点C在圆A上,点D在圆A内 D.点C在圆A内,点D在圆A外
    2.(2021·湖北鄂州·统考中考真题)已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为(    )

    A. B. C. D.
    3.(2021·江苏常州·统考中考真题)如图,是的直径,是的弦.若,则 的度数是(     )

    A. B. C. D.
    4.(2021·江苏徐州·统考中考真题)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的(     )

    A.27倍 B.14倍 C.9倍 D.3倍
    5.(2022·吉林·统考中考真题)如图,在中,,,.以点为圆心, 为半径作圆,当点在内且点在外时,的值可能是(     )

    A.2 B.3 C.4 D.5
    6.(2022·西藏·统考中考真题)如图,AB是⊙O的弦,OC⊥AB,垂足为C,,OC=OD,则∠ABD的度数为(  )

    A.90° B.95° C.100° D.105°
    7.(2021·四川攀枝花·统考中考真题)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为(  )

    A.2 B. C.3 D.
    8.(2022·山东聊城·统考中考真题)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是(     )
      
    A.30° B.25° C.20° D.10°
    9.(2022·青海·统考中考真题)如图所示,,,以点A为圆心,AB长为半径画弧交x轴负半轴于点C,则点C的坐标为(     )

    A. B. C. D.
    10.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a和直线外一定点O,过点O作直线与a平行.(1)以O为圆心,单位长为半径作圆,交直线a于点M,N;(2)分别在的延长线及上取点A,B,使;(3)连接,取其中点C,过O,C两点确定直线b,则直线.按以上作图顺序,若,则(    )
      
    A. B. C. D.
    二、填空题
    11.(2022·山东东营·统考中考真题)如图,在中,弦半径,则的度数为 .

    12.(2021·湖南娄底·统考中考真题)弧度是表示角度大小的一种单位,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作.已知,则与的大小关系是 .

    13.(2022·吉林·统考中考真题)如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,以点为圆心,长为半径作弧,交轴正半轴于点,则点的坐标为 .

    14.(2023·黑龙江·统考中考真题)在中,,点是斜边的中点,把绕点顺时针旋转,得,点,点旋转后的对应点分别是点,点,连接,,在旋转的过程中,面积的最大值是 .
    15.(2021·江苏连云港·统考中考真题)如图,、是的半径,点C在上,,,则 .

    16.(2021·湖北十堰·统考中考真题)如图,在中,,点P是平面内一个动点,且,Q为的中点,在P点运动过程中,设线段的长度为m,则m的取值范围是 .

    17.(2021·青海·统考中考真题)点是非圆上一点,若点到上的点的最小距离是,最大距离是,则的半径是 .
    18.(2021·江苏南通·统考中考真题)如图,在中,,,以点A为圆心, 长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为 .

    19.(2022·辽宁抚顺·统考中考真题)如图,正方形的边长为10,点G是边的中点,点E是边上一动点,连接,将沿翻折得到,连接.当最小时,的长是 .

    20.(2022·广西柳州·统考中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 .

    21.(2023·湖南·统考中考真题)如图,在矩形中,,动点在矩形的边上沿运动.当点不与点重合时,将沿对折,得到,连接,则在点的运动过程中,线段的最小值为 .
      
    三、解答题
    22.(2021·江苏徐州·统考中考真题)如图,为的直径,点在上,与交于点,,连接.求证:
    (1);
    (2)四边形是菱形.





    23.(2022·江苏南京·统考中考真题)如图,在中,,点、在上,,过、、三点作,连接并延长,交于点.
    (1) 求证:;
    (2) 若,,,求的半径长.







    24.(2022·重庆·统考中考真题)在中,,,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90°得到线段,连接,.
    (1) 如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;
    (2) 如图2,的延长线交于点M,点N在上,且,
    求证:;
    (3) 如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将 沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值.



















    参考答案
    1.C
    【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可
    解:
    ∵圆A与圆B内切,,圆B的半径为1
    ∴圆A的半径为5
    ∵<5
    ∴点D在圆A内
    在Rt△ABC中,
    ∴点C在圆A上
    故选:C
    【点拨】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键
    2.B
    【分析】根据画图过程,得到OD=OC,由等边对等角与三角形内角和定理得到∠ODC=∠OCD=,同理得到∠DOE=∠DEO=40︒,由∠OCD为△DCE的外角,得到结果.
    解:∵以为圆心,长为半径画,交于点,
    ∴OD=OC,
    ∴∠ODC=∠OCD,
    ∵∠AOB=40︒,
    ∴∠ODC=∠OCD=,
    ∵以为圆心,长为半径画,交于点,
    ∴DO=DE,
    ∴∠DOE=∠DEO=40︒,
    ∵∠OCD为△DCE的外角,
    ∴∠OCD=∠DEC+∠CDE,
    ∴70︒=40︒+∠CDE,
    ∴∠CDE=30︒,
    故选:B.
    【点拨】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.
    3.C
    【分析】先根据平角的定义求出∠AOB,再根据等腰三角形的性质求解,即可.
    解:∵,
    ∴∠AOB=180°-60°=120°,
    ∵OA=OB,
    ∴=∠OBA=(180°-120°)÷2=30°,
    故选C.
    【点拨】本题主要考查圆的基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.
    4.B
    【分析】设OB=x,则OA=3x,BC=2x,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.
    解:由圆和正方形的对称性,可知:OA=OD,OB=OC,

    ∵圆的直径与正方形的对角线之比为3:1,
    ∴设OB=x,则OA=3x,BC=2x,
    ∴圆的面积=π(3x)2=9πx2,正方形的面积==2x2,
    ∴9πx2÷2x2=,即:圆的面积约为正方形面积的14倍,
    故选B.
    【点拨】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.
    5.C
    【分析】先利用勾股定理可得,再根据“点在内且点在外”可得,由此即可得出答案.
    解:在中,,,,

    点在内且点在外,
    ,即,
    观察四个选项可知,只有选项C符合,
    故选:C.
    【点拨】本题考查了勾股定理、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
    6.D
    【分析】连接OB,即得出OB=OD,从而得出∠OBD=∠ODB.根据含30度角的直角三角形的性质结合题意可判断∠OBC=30°,再利用平行线的性质可得出∠BOD=∠OBC=30°,从而根据三角形内角和求出∠OBD=∠ODB=75°,最后由∠ABD=∠OBC+∠OBD求解即可.
    解:如图:连接OB,

    ∴OB=OD,
    ∴∠OBD=∠ODB.
    ∵OC=OD,
    ∴OC=OB.
    ∵OC⊥AB,
    ∴,
    ∴∠OBC=30°.
    ∵,
    ∴∠BOD=∠OBC=30°,
    ∴∠OBD=∠ODB=75°,
    ∴∠ABD=∠OBC+∠OBD=30°+75°=105°.
    故选D.
    【点拨】本题考查圆的基本性质,等腰三角形的性质,含30度角的直角三角形的性质,平行线的性质,三角形内角和定理的应用.连接常用的辅助线是解题关键.
    7.A
    【分析】根据对称性得到动点M的轨迹是在以A圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.
    解:连接AM,如图所示:

    ∵点B和M关于AP对称,
    ∴AB=AM=3,
    ∴M在以A圆心,3为半径的圆上,
    ∴当A,M,C三点共线时,CM最短,
    ∵在矩形ABCD中,AC=,
    AM=AB=3,
    ∴CM=5﹣3=2,
    故选:A.
    【点拨】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.
    8.C
    【分析】如图,连接OB,OD,AC,先求解,再求解,从而可得,再利用周角的含义可得,从而可得答案.
    解:如图,连接OB,OD,AC,
      
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴.
    ∴的度数20°.
    故选:C.
    【点拨】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.
    9.C
    【分析】先求得OA的长,从而求出OC的长即可.
    解:∵,
    ∴OA=,
    ∵,以点A为圆心,AB长为半径画弧交x轴负半轴于点C,
    ∴,
    ∴,
    ∵点C为x轴负半轴上的点,
    ∴C,
    故选:C.
    【点拨】本题主要考查了坐标与图形的性质,勾股定理等知识,明确AB=AC是解题的关键.
    10.A
    【分析】证明,可得,结合,C为的中点,可得.
    解:∵,,
    ∴,
    ∴,
    ∵,C为的中点,
    ∴,
    故选A.
    【点拨】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.
    11.100°/100度
    【分析】先根据平行线的性质求出∠OCA的度数,再根据等边对等角求出∠OAC的度数,即可利用三角形内角和定理求出∠AOC的度数.
    解:∵,
    ∴∠OCA=∠BOC=40°,
    ∵OA=OC,
    ∴∠OAC=∠OCA=40°,
    ∴∠AOC=180°-∠OAC-∠OCA=100°,
    故答案为:100°.
    【点拨】本题主要考查了平行线的性质,圆的基本性质,三角形内角和定理,等腰三角形的性质,熟知相关知识是解题的关键.
    12.
    【分析】根据弧度的定义,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作,当时,三角形为等边三角形,所以圆心角所对的弧长比半径大,即可判断大小.
    解:根据弧度的定义,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作,
    当时,易知三角形为等边三角形,弦长等于半径,
    圆心角所对的弧长比半径大,

    故答案是:.
    【点拨】本题考查了弧度的定义,解题的关键是:理解弧度的定义,从而利用定义来判断.
    13.
    【分析】连接,先根据点的坐标可得,再根据等腰三角形的判定可得是等腰三角形,然后根据等腰三角形的三线合一可得,由此即可得出答案.
    解:如图,连接,

    点的坐标为,

    由同圆半径相等得:,
    是等腰三角形,

    (等腰三角形的三线合一),
    又点位于轴正半轴,
    点的坐标为,
    故答案为:.
    【点拨】本题考查了同圆半径相等、等腰三角形的三线合一、点坐标等知识点,熟练掌握等腰三角形的三线合一是解题关键.
    14./
    【分析】过点A作交的延长线于点G,求出,然后由旋转的性质可知点F在以A为圆心的长为半径的圆上运动,则可得如图中G、A、F三点共线时点F到直线的距离最大,求出距离的最大值,然后计算即可.
    解:如图,在中,,,点是斜边的中点,
    ∴,,,
    ∴,
    过点A作交的延长线于点G,
    ∴,
    又∵在旋转的过程中,点F在以A为圆心的长为半径的圆上运动,,
    ∴点F到直线的距离的最大值为,(如图,G、A、F三点共线时)
    ∴面积的最大值,
    故答案为:.
      
    【点拨】本题考查了含直角三角形的性质,直角三角形斜边中线的性质,旋转的性质,圆的基本性质等知识,根据旋转的性质求出点F到直线距离的最大值是解答本题的关键.
    15.25
    【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=100°,求出∠AOC,根据等腰三角形的性质计算.
    解:连接OC,

    ∵OC=OB,
    ∴∠OCB=∠OBC=40°,
    ∴∠BOC=180°-40°×2=100°,
    ∴∠AOC=100°+30°=130°,
    ∵OC=OA,
    ∴∠OAC=∠OCA=25°,
    故答案为:25.
    【点拨】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.
    16.≤m≤
    【分析】作AB的中点M,连接CM、QM,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得QM和CM的长,然后在△CQM中根据三边关系即可求解.
    解:作AB的中点M,连接CM、QM.

    在以为圆心,为半径的圆上运动,

    在直角△ABC中,AB=,
    ∵M是直角△ABC斜边AB上的中点,
    ∴CM=AB=5.
    ∵Q是BP的中点,M是AB的中点,
    ∴MQ=AP=.
    ∴在△CMQ中,5−≤CQ≤+5,即≤m≤.
    故答案是:≤m≤.
    【点拨】本题考查了三角形的中位线的性质,三角形三边长关系,勾股定理、直角三角形斜边上的中线等于斜边的一半,作圆,作AB的中点M,连接CM、QM,构造三角形,是解题的关键.
    17.或
    【分析】分点在外和内两种情况分析;设的半径为,根据圆的性质列一元一次方程并求解,即可得到答案.
    解:设的半径为
    当点在外时,根据题意得:

    当点在内时,根据题意得:

    故答案为:或.
    【点拨】本题考查了圆、一元一次方程的知识;解题的关键是熟练掌握圆的性质,从而完成求解.
    18..
    【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.
    解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,

    设AC=BC=a,

    ∴,
    ∴,






    设CE=x,则FE=
    在Rt△AFE中,

    解得,,(不符合题意,舍去)





    在Rt△BGE中,


    故答案为:.
    【点拨】此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.
    19.
    【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.
    解:①分析所求线段端点:是定点、是动点;②动点的轨迹:正方形的边长为10,点E是边上一动点,连接,将沿翻折得到,连接,则,因此动点轨迹是以为圆心,为半径的圆周上,如图所示:

    ③最值模型为点圆模型;④最小值对应的线段为;⑤求线段长,连接,如图所示:

    在中,,正方形的边长为10,点G是边的中点,则,根据勾股定理可得,
    当三点共线时,最小为,
    接下来,求的长:连接,如图所示

    根据翻折可知,设,则根据等面积法可知,即整理得,解得,
    故答案为:.
    【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.
    20.
    【分析】如图,由EG=2,确定在以G为圆心,半径为2的圆上运动,连接AE, 再证明(SAS), 可得可得当三点共线时,最短,则最短,再利用勾股定理可得答案.
    解:如图,由EG=2,可得在以G为圆心,半径为2的圆上运动,连接AE,

    ∵正方形ABCD,



    ∵DE=DF,
    ∴(SAS),

    ∴当三点共线时,最短,则最短,
    ∵位BC 中点,

    此时
    此时
    所以CF的最小值为:
    故答案为:
    【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.
    21./
    【分析】根据折叠的性质得出在为圆心,为半径的弧上运动,进而分类讨论当点在上时,当点在上时,当在上时,即可求解.
    解:∵在矩形中,,
    ∴,,
    如图所示,当点在上时,
      

    ∴在为圆心,为半径的弧上运动,
    当三点共线时,最短,
    此时,
    当点在上时,如图所示,
      
    此时
    当在上时,如图所示,此时
      
    综上所述,的最小值为,
    故答案为:.
    【点拨】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.
    22.(1)见分析;(2)见分析
    【分析】(1)由已知条件根据全的三角形的判定即可证明;
    (2)首先根据平行四边形的判定证明四边形是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.
    解:(1)在和中,
    ∵,
    ∴;
    (2)∵为的直径,
    ∴,
    ∵,
    ∴,,
    ∴∥,,
    ∴四边形是平行四边形.
    ∵,
    ∴四边形是菱形.
    【点拨】本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键.
    23.(1)见分析;(2)的半径为5
    【分析】(1)连接、、、,先证明,得到,再由,可得垂直平分,即,
    (2)设求的半径为,由(1)可知为中点,则,利用勾股定理求出,再求出,,,由勾股定理建立方程,解得,则的半径为5.
    解:(1)证明:连接、、、,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    又∵,
    ∴垂直平分,即,

    (2)解:设求的半径为,
    由(1)可知,
    ∴为中点,为中点,
    ∴,
    在中,,
    在中,,,,

    ∴,
    解得,
    ∴的半径为5.
    【点拨】本题主要考查了三线合一定理,线段垂直平分线的性质与判定,全等三角形的性质与判定,勾股定理,圆的基本性质等等,灵活运用所学知识是解题的关键.
    24.(1)2;(2)见分析;(3)
    【分析】(1)根据已知条件可得为的中点,证明,进而根据直角三角形斜边上的中线等于斜边的一半即可求解;
    (2)过点作交的延长线于点,证明,,可得,进而根据,即可得出结论,
    (3)根据(2)可知,当点在线段上运动时,点在平行于的线段上运动,根据题意作出图形,根据点到圆上的距离求最值即可求解.
    解:(1)如图,连接

    将线段绕点E顺时针旋转90°得到线段,
    是等腰直角三角形,
    P为FG的中点,



    ,D为的中点,,
    ,,

    在中,;
    (2)如图,过点作交的延长线于点,





    是等腰直角三角形,


    在与中,  





    又,,  




    ,  
    又,

    ,





    (3)由(2)可知,
    则当点在线段上运动时,点在平行于的线段上运动,
    将沿翻折至所在平面内,得到,
    E为的中点,


    则点在以为圆心为半径的圆上运动,当三点共线时,最小,
    如图,当运动到与点重合时,取得最小值,.

    如图,当点运动到与点重合时,取得最小值,
    此时,则.

    综上所述,的最小值为.
    【点拨】本题考查了等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理,全等三角形的性质与判定,轴对称线的性质,点到圆上一点距离最值问题,正确的添加辅助线是解题的关键.
    相关试卷

    专题2.55 圆(全章直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版): 这是一份专题2.55 圆(全章直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版),共37页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题2.54 圆(全章直通中考)(提升练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版): 这是一份专题2.54 圆(全章直通中考)(提升练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题2.53 圆(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版): 这是一份专题2.53 圆(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版),共29页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.3 圆及相关概念(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map