搜索
    上传资料 赚现金
    英语朗读宝

    《诱导公式(第二课时)》示范公开课教学设计【高中数学人教版】

    《诱导公式(第二课时)》示范公开课教学设计【高中数学人教版】第1页
    《诱导公式(第二课时)》示范公开课教学设计【高中数学人教版】第2页
    《诱导公式(第二课时)》示范公开课教学设计【高中数学人教版】第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修 第一册第五章 三角函数5.3 诱导公式第二课时教案

    展开

    这是一份数学必修 第一册第五章 三角函数5.3 诱导公式第二课时教案,共8页。教案主要包含了知识点解析等内容,欢迎下载使用。
    诱导公式(第二课时)》教学设计 1借助单位圆的对称性,利用定义推导出诱导公式(±α的正弦、余弦、正切);通过经历诱导公式的探究过程,积累应用类比、转化、数形结合等方法研究三角函数性质的经验,发展直观想象素养.2.初步应用诱导公式解决问题,积累解题经验,发展数学运算素养.教学重点:利用圆的对称性探究诱导公式,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明.教学难点:诱导公式的有效识记和应用PPT课件资源引用:【知识点解析】诱导公式五和六的认识【知识点解析】5.3 诱导公式知识导图(一)新知探究引导语:通过上一节课的研究,我们知道了将圆的对称性代数化就得到了诱导公式,这些都是三角函数的对称性.本节课沿着上一节课的思路继续进行.问题1通过圆关于原点、x轴、y轴对称,我们得到了诱导公式二、三、四,你还能找到一些特殊的直线对称,或者两次对称,类比前面的方法,写出相应的问题,并解决吗?试一试.预设的师生活动:教师根据学生完成情况,挑选如下内容进行展示.其他拓展内容视情况而定,可以展示,也可以由学生课下交流.预设答案:1)提出问题:如图1P1关于直线yx的对称点P5,以OP5为终边的角β与角α有什么关系?角β与角α的三角函数值之间有什么关系?解:如图1,以OP5为终边的角β都是与角α终边相同的角,即β=2kπ(α)kZ).因此,只要探求角αα的三角函数值之间的关系即可.P5x5y5),由于P5是点P1关于直线yx的对称点,可以证明:x5y1y5x1根据三角函数的定义,得sinα)=y5cosα)=x5从而得公式五2)提出问题:如图2P1关于直线yx的对称点P5再作P5关于y轴的对称点P6,又能得到什么结论?OP6为终边的角β与角α有什么关系?角β与角α的三角函数值之间有什么关系?解:接上一题.如图2,以OP6为终边的角β都是与角α终边相同的角,即β=2kπ(α)kZ).因此,只要探求角αα的三角函数值之间的关系即可.P6x6y6),由于P6是点P5关于y的对称点,因此有:x6=-x5y6y5根据三角函数的定义,得sinα)=y6cosα)=x6从而得公式六3)提出问题:如图3P1关于x轴的对称点是P7再作P7关于直线yx的对称点P6,又能得到什么结论?OP6为终边的角β与角α有什么关系?角β与角α的三角函数值之间有什么关系?解:略.★资源名称:【知识点解析】诱导公式五和六的认识★使用说明:本资源展现“诱导公式五和六的认识”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.追问:除了上面的两次对称关系,角α的终边与角α的终边还具有怎样的对称性?据此你将如何证明公式六?预设的师生活动:如果有学生提前想到了就延续前面的展示活动,如果学生没有想到,则由教师提出这个追问,促进学生思考.预设答案α的终边旋转角,就得到角α的终边.如图4,由两个三角形全等易得点P8P1坐标间关系,进一步可得公式六.设计意图:通过设置问题1,一方面,使学生更加深入地了解圆具有丰富的对称性,另一方面,让他们通过类比,不断地利用数形结合的思想方法,提高自己提出问题、分析问题、解决问题的能力,发展逻辑推理、几何直观等核心素养问题2:回顾利用公式一~公式把任意角的三角函数转化为锐角三角函数,并且建立了流程图的求解程序,那么公式五或公式六的作用是什么?可能在哪个环节用到这两组公式?预设的师生活动:在学生思考展示的基础上互相交流,并完善.预设答案:利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.如图5所示可以在变成锐角的过程中发生作用.公式一~六都叫做诱导公式(induction formula)设计意图:基于前述的求解程序,进行理性思考,完善求解程序,帮助学生提升运算素养.3  证明:1sin=-cos α2cossin α4  化简追问:观察题目中的角,对比诱导公式,根据图4,应该怎样化简转化为公式的形式?预设的师生活动:学生更具问题的引导,独立思考,并求解.学生展示时紧扣图4进行.预设答案:3  证明:(1sinsin=-sin=-cos α2coscos=-cossin α4  解:原式==-=-tan 设计意图:引导学生理性思考,有序解题,完善求解程序,提升数学运算素养.5  已知sin53°-α)=,且-270°<α<-90°,求sin37°+α)的值.追问:观察题目中的角,它们有怎样的关系?和哪个诱导公式接近?能不能通过换元,使得已知角与所求角之间关系更加明了?由此你确定的求解思路是怎样的?预设的师生活动:让学生通过观察,自己思考并回答.预设答案:分析注意到53°α+37°α=90°如果设β53°αγ= 37°α那么β+γ=90°由此可利用诱导公式和已知条件解决问题.β53°αγ37°α那么βγ90°从而γ90°β于是sin γsin90°-β)=cos β为-270°<α<-90°,所以143°<β323°.sin β0,得143°<β180°.所以cos β=-=-=-所以sin37°+α)=sin γ=-设计意图:引导学生学会观察分析,进行理性思考,学会有序求解,提升数学运算素养.(二)归纳小结问题3教师引导学生回顾本单元学习内容,并回答下面问题:1)你学到了哪些基本知识,它们的作用是什么?能解决什么问题?求解的程序是什么?2)我们已经知道诱导公式是三角函数的性质,是圆的对称性的代数化,据此,你觉得怎样记忆到目前为止学过的这6组诱导公式?此外,仅仅观察6组诱导公式的形式特征,你还能怎样记忆这些公式?3能不能画一个结构图来反映本节课的研究思路及内容?预设的师生活动:以学生的独立思考,展示交流,互相补充为主.教师予以及时的点拨.★资源名称:【知识点解析】5.3 诱导公式知识导图★使用说明:本资源给出了本节知识结构框图,针对本节内容进行知识点梳理,有助于理解和掌握本节的知识结构.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:(1)本单元学习了三角函数的基本性质——诱导公式;这些诱导公式体现了三角函数的对称性,在求三角函数值时,它们还具有转化作用,另外,还可以实现正弦与余弦的相互转化;求解程序略.基本的思想是:负角变正角,大角变小角.(2)只要了解了诱导公式是通过哪个对称变化得到的,这种变化中点的坐标的关系是怎样的,就可以记住公式,而且还可以进一步推广公式.(3)通过观察发现,如果是一个角加的奇数倍,那么变换后会改变三角函数的名字;如果是一个角加的偶数倍,那么变换后会不改变三角函数的名字.设计意图:梳理小结,一方面帮助学生进一步明确求解的程序.另一方面,通过帮助学生梳理借助于单位圆记忆公式的过程,进一步认识诱导公式的本质.第三,通过观察形式,分析特点,总结记忆方法,从另一个角度认知诱导公式,进行抽象概括.(三)布置作业教科书习题5.3(四)目标检测设计计算或化简:1cosπ        2sin        3tan4cos    5sin=-cos α预设答案:1)-;(2;(34sin α;(5)-cos α设计意图:检测学生对基本知识和技能的掌握情况. 

    相关教案

    高中数学人教A版 (2019)必修 第一册5.3 诱导公式教学设计:

    这是一份高中数学人教A版 (2019)必修 第一册5.3 诱导公式教学设计,共4页。

    人教A版 (2019)必修 第一册第五章 三角函数5.3 诱导公式第2课时教学设计:

    这是一份人教A版 (2019)必修 第一册第五章 三角函数5.3 诱导公式第2课时教学设计,共5页。教案主要包含了六的推导探究,诱导公式的应用;等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第五章 三角函数5.3 诱导公式第一课时教案及反思:

    这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.3 诱导公式第一课时教案及反思,共7页。教案主要包含了知识点解析等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map